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Decision making under risk entails the anticipation of prospective outcomes, typically leading to the greater sensitivity to losses than gains
known as loss aversion. Previous studies on the neural bases of choice-outcome anticipation and loss aversion provided inconsistent results,
showing either bidirectional mesolimbic responses of activation for gains and deactivation for losses, or a specific amygdala involvement in
processing losses. Here we focused on loss aversion with the aim to address interindividual differences in the neural bases of choice-outcome
anticipation. Fifty-six healthy human participants accepted or rejected 104 mixed gambles offering equal (50%) chances of gaining or losing
different amounts of money while their brain activity was measured with functional magnetic resonance imaging (fMRI). We report both
bidirectional and gain/loss-specific responses while evaluating risky gambles, with amygdala and posterior insula specifically tracking the
magnitude of potential losses. At the individual level, loss aversion was reflected both in limbic fMRI responses and in gray matter volume in a
structural amygdala–thalamus–striatum network, in which the volume of the “output” centromedial amygdala nuclei mediating avoidance
behavior was negatively correlated with monetary performance. We conclude that outcome anticipation and ensuing loss aversion involve
multiple neural systems, showing functional and structural individual variability directly related to the actual financial outcomes of choices. By
supporting the simultaneous involvement of both appetitive and aversive processing in economic decision making, these results contribute to
the interpretation of existing inconsistencies on the neural bases of anticipating choice outcomes.

Introduction
While cognitive theories (Kahneman and Tversky, 1979) and
neuroscientific investigations (Rangel et al., 2008) ground deci-
sion making in the anticipation and evaluation of prospective
gains and losses, a consistent view of the neural system(s) under-
pinning these processes is still missing.

Neurophysiological investigations have associated both the
anticipation and the experience of rewards with the ventral stria-
tum (VS) (Tobler et al., 2005). However, human neuroimaging
studies investigating decision utility, i.e., the “pure” anticipation
of outcomes without the expectation of their immediate experi-
ence, obtained inconsistent evidence. Anticipating rewards en-

gages the VS (Knutson et al., 2001; Tobler et al., 2007), while
anticipating negative outcomes was associated with amygdala acti-
vation in some studies (Yacubian et al., 2006; Canessa et al., 2009,
2011) but not in others (Tom et al., 2007; Smith et al., 2009). Recent
data showed that loss anticipation involves the deactivation of me-
socorticolimbic gain-related structures (i.e., bidirectional re-
sponses), with no activation specific to losses (Tom et al., 2007). In
the same study, individual differences in loss aversion, i.e., the
greater sensitivity to losses than equivalent gains (Kahneman and
Tversky, 1984), was reflected in a steeper degree of deactivation ver-
sus activation in the VS, with no involvement of “emotional” regions
such as insula and amygdala. The latter result, however, conflicts
with the observation that amygdala damage eliminates loss aversion
(De Martino et al., 2010), as well as with the reduction, induced by
emotion regulation strategies, of both loss aversion and amygdala
response to losses (Sokol-Hessner et al., 2013). Overall, the role of
amygdala in loss anticipation highlighted by these data suggested
that loss aversion may reflect a Pavlovian approach-avoidance re-
sponse (De Martino et al., 2010), which involves the amygdala
(Phelps and LeDoux, 2005), inhibiting action when outcomes are
potentially aversive.

The inconsistencies between studies reporting or not reporting
amygdala involvement may result from methodological factors, in-
cluding the use of different tasks and stimuli (Yacubian et al., 2006;
Tom et al., 2007), as well as ranges of potential gains/losses sampled
from either symmetrical or asymmetrical payoff matrices (Tom et
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al., 2007 and De Martino et al., 2010). Moreover, some studies used
subtractive (i.e., comparing “high” vs “low” gains/losses;
Smith et al., 2009) rather than parametric (relating variable
amounts of gain/loss with brain activity; Tom et al., 2007) de-
signs, and most of them reported group data, thus neglecting the
intrinsic individual variability when choosing. Finally, no studies
investigated a neurostructural marker of loss aversion which,
however, may provide critical cues about its neural basis.

Therefore, we focused on loss aversion to address interindividual
differences in the neural bases of decision utility by coupling behav-
ioral analyses with multimodal neuroimaging. We used functional
magnetic resonance imaging (fMRI) to investigate whether individ-
ual differences in loss aversion were reflected in variations of brain
activity underlying outcome anticipation, via bidirectional or gain/
loss specific responses, as well as multivariate source-based mor-
phometry (SBM) to investigate a “loss-aversion structural network”
and univariate voxel-based morphometry (VBM) to identify specific
functional components within this network, and particularly its out-
put regions linking choice behavior with financial performance.

Materials and Methods
Participants. Fifty-six healthy, right-handed (Oldfield, 1971) monolingual
native speakers of Italian (29 females [mean age � 24.91, SD � 3.90, range �
19–33] and 27 males [mean age � 24.78, SD � 4.44, range � 19–38])
participated in the study. All subjects had normal or corrected-to-normal
visual acuity. All reported no history of psychiatric or neurological disorders,
nor of drug/substance use, and no current use of any psychoactive medica-
tions. To exclude cases of pathological gambling, they were screened with an
Italian translation of the South Oaks Gambling Screen (Lesieur and Bloome,
1987). They gave their written informed consent to the experimental proce-
dure, which was approved by the local Ethics Committee.

Task, stimuli, and procedure. Participants performed a gambling task en-
tailing the anticipation of real monetary gains and losses. They were asked to
accept or reject a series of 104 mixed gambles offering equal (fixed at 50%)
chances of gaining or losing different amounts of money (Fig. 1A). The
possible gains and losses were sampled from a symmetrical matrix ranging
from 1 and 99 a.u., and they were not significantly correlated with each other.
Gambles were shown for 5 s, and replaced by a fixation cross that prompted
participants to indicate their choice with a response box. Interstimulus in-
tervals (ISIs) between successive trials were presented in different (“jit-
tered”) durations across trials (Dale, 1999). The OptSeq2 Toolbox
(http://surfer.nmr.mgh.harvard.edu/optseq/) was used to estimate
the optimal ISIs (mean ISI � 5.96 s, range � 2.5–18.75). In line with
standard procedures (Pantaleo, 2012), the 104 trials were assigned to
four functional runs, whose order was individually randomized for
each subject.

Participants’ performance resulted either in the increase or decrease of an
initial endowment that was delivered 1 week before scanning to minimize
the perception of “windfall” gains. We focused on “decision utility,” as gam-
bles were not resolved immediately. Indeed, all the accepted gambles were
covertly played by the computer, with all their outcomes contributing to the
final monetary payoff. To encourage participants to reflect on the subjective
attractiveness of each mixed gamble instead of relying on a fixed rule, we
asked them to indicate one of three possible responses, namely “strongly
accept,” “weakly accept,” and “reject.” We used the software Presentation
11.0 (Neurobehavioral Systems http://www.neurobs.com) both for stimuli
presentation and recording of subjects’ answers.

Behavioral analysis. The probability of accepting the mixed gamble was
modeled by a logistic psychometric function based on Prospect Theory
(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) with sep-
arate linear utility functions for gains and losses (Tom et al., 2007):

Pr(Y � 1 � PG, G, PL, L) � [1 � exp( � {UG�G�PG � UL�L�PL})]�1

� �1 � exp��
�1 � ��GPG � �LPL

� ���1

, (1)

where UG( G)PG � UL( L)PL is the expected utility (EU) for a mixed
gamble, and UG( G) � �GG and UL( L) � �LL are the linear utility func-

tions (�G � 0, �L � 0, G � 0 and L � 0). As assumed by Prospect Theory,
the utility functions depend on changes in wealth (gains and losses)
rather than on the final state of wealth (Kahneman and Tversky, 1979;
Tversky and Kahneman, 1992). Moreover, the model also assumes that
gains and losses can be weighted differently. As in Tom et al. (2007), we
did not include probability weighting functions and used linear utility
functions to allow the comparison between the two studies. Given that
this model does not relax the expectation principle by using probability
weighting functions as in the case of Prospect Theory, we refer to it as the
EU model. This model can be reparameterized in terms of weighted
average between gains and losses where the weight for loss is � � �L/(�L �
�G) and a response uncertainty parameter � � 1/(�L � �G). The weight � is
closely related to the definition of loss aversion used by Tom et al. (2007)
(�L/�G � �/(1 � �)). By definition, this parameter indicates a loss-averse
subject when its value is larger than 0.5. The response uncertainty parameter
corresponds to the inverse of the slope of the psychometric function, and
reflects how well EU separates the two possible responses.

The expected value (EV) model is as follows:

Pr(Y � 1 � PG, G, PL, L) � [1 � exp�EV/���]�1, (2)

where EV � PG G � PL L is the EV, and is the average gain (or loss) that
one would expect if the mixed gamble were repeated an infinite number
of times. The expected value model is a special case of the EU model with
� � 0.5 and �� � 2�. Unlike the utility model, gains and losses have the
same weight in the expected value model (� � 0.5 implies that �G � �L).
The statistical significance of the loss-aversion parameter can therefore
be tested by means of a likelihood-ratio test where the difference between
the residual variances of the two nested models follows a � 2 distribution
with one degree of freedom. An individual maximizing her/his profit
would accept the mixed gamble each time EV � 0. Such an individual
would be loss-neutral (� 	 0.5) and have response uncertainty near zero
(� 	 0).

To estimate participants’ risk aversion, the EV model was extended to
include the risk as follows:

Pr�Y � 1 � PG, G, PL, L� � [1 � exp��0 � �EVEV � �RR�]�1,

(3)

where the risk R � (G2PG(1 � PG) � L2PL (1 � PL)) 1/2 corresponds to
the SD of the possible outcomes of the gamble. In this model, the indif-
ference curve EV � �0 � �RR with �0 � –�0/�EV and �R � –�R/�EV

expresses a trade-off between the expected value EV and the risk R of the
gambles toward which the participant has no preference (i.e., Pr(Y �
1�PG,G,PL,L) � 0.5). By definition, a positive slope �R signals a risk-
averse person who accepts more risky gambles only with a commensurate
increase of their expected value.

MR data acquisition. We acquired anatomical T1-weighted and func-
tional T2*-weighted MR images with a 3 T Philips Achieva scanner
(Philips Medical Systems), using an 8-channels Sense head coil (sense
reduction factor � 2). Functional images were acquired using a T2*-
weighted gradient-echo, echo-planar pulse sequence (42 interleaved
transverse slices covering the whole brain except for posterior occipital
regions in some subjects, tilted 30° downward with respect to the bicom-
missural line to reduce susceptibility artifacts in orbitofrontal regions,
TR � 2500 ms, TE � 30 ms, flip-angle � 85°, FOV � 240 mm 
 240 mm,
slice thickness � 3 mm, interslice gap � 0.2 mm, in-plane resolution �
1.88 mm 
 1.88 mm). Each scanning sequence comprised 142 sequential
volumes. A high-resolution T1-weighted anatomical scan (150 slices,
TR � 600 ms, TE � 20 ms, slice thickness � 1 mm, in-plane resolution �
1 mm 
 1 mm) was also acquired for each subject.

fMRI data preprocessing and statistical analyses. Image preprocessing
and statistical analyses were performed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm), implemented in MATLAB v7.4 (MathWorks) (Worsley
and Friston, 1995). We discarded the first six volumes of each functional
run to allow for T1-equilibration effects. All remaining 912 volumes
from each subject were then spatially realigned to the first volume of the
first scan and unwarped, spatially normalized, and resampled in 2 
 2 

2 mm 3 voxels, spatially smoothed with an 8 mm full-width half-
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maximum (FWHM) isotropic Gaussian kernel, and globally scaled to
100. The resulting time series across each voxel were high-pass filtered to
1/128 Hz, and serial autocorrelations modeled as an AR(1) process.

We used parametric statistical analyses to highlight brain regions in
which, during gamble evaluation, activity was positively or negatively
linearly related with the magnitude of the potential gain or loss, while
controlling for the effect of the EV of the gamble. Statistical maps were
generated using a random-effect model, implemented in a two-level pro-
cedure. At the first level, we modeled trials as mini-epochs lasting 5 s in a
design matrix including three additional regressors modeling a linear
parametric modulation of the evaluation-related activity by the overall
EV of the gamble, the magnitude of potential gain, and the magnitude of
potential loss. The last two regressors thus highlighted voxels in which
activity was significantly related with the magnitude of prospective gains
or losses (uncorrelated with each other) after accounting for the effect of
the EV of the gamble. An additional regressor modeled the subject’s actual
choice (accept/reject), to exclude its potential effect from functional results.
Regressors modeling events were convolved with a canonical hemodynamic
response function, and parameter estimates for all regressors were obtained
at each voxel by maximum-likelihood estimation.

At the second level, the first-level contrast images entered a full-
factorial design with sphericity correction for repeated measures to iden-
tify voxels in which activity was specifically correlated with the amount of
potential gains or losses. We performed this procedure separately for the
regions showing either positive or negative correlations with the amount
of gain/loss (i.e., activations or deactivations). In all analyses, we thresh-
olded the resulting statistical maps at p � 0.05 corrected for multiple
comparisons at the voxel level or based on cluster extent. We also assessed
the hypothesis that the same regions that are activated by potential gains
are also deactivated by potential losses, or vice versa (a “bidirectional
response”). To this purpose, we used the conjunction-null test (Nichols
et al., 2005) between the statistical maps of “activations for gains” and
“deactivations for losses,” as well as between “activations for losses” and
“deactivations for gains.”

We then focused on loss aversion to examine potential relationships
between behavioral and neural individual differences. We regressed the
statistical maps resulting from previous steps against the individual loss-
aversion parameter to assess whether bidirectional and gain/loss-specific
anticipatory responses also reflected individual differences in behavioral
loss aversion. To characterize the relationship between loss aversion and
the positive versus negative components of the bidirectional responses
(i.e., activations vs deactivations), we first correlated the individual loss-
aversion parameter with the strength of anticipatory neural activity (pa-
rameter estimates) of 4 mm radius spheres centered on their peak voxels,
separately for activations (the positive component) and deactivations
(the negative component). Then, we tested whether the correlation be-
tween loss aversion and neural activity was significantly different across
activations and deactivations using a separate-slopes statistical model.
Finally, we explicitly investigated a “neural loss-aversion” response in
regions actively anticipating losses. Following Tom et al. (2007), for all
subjects we subtracted the slope of the gain response from the slope of the
loss response, and vice versa. The resulting single-subject images entered
a multiple regression, to identify the voxels showing a significant positive
correlation between behavioral and neural loss aversion, i.e., voxels in
which greater behavioral sensitivity for losses than gains reflects stronger
anticipatory neural activations for losses than gains, or for gains than
losses. Finally, we examined the regions where stronger activity was
associated with acceptance of the mixed gamble, compared with its
rejection, after accounting for the effect of the amount of prospective
outcomes.

The location of activation foci was determined in the stereotaxic
space of Talairach and Tournoux (1988) after correcting for differ-
ences between the latter and the Montreal Neurological Institute
(MNI) coordinate systems with a nonlinear transformation (http://
www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml).

VBM preprocessing and statistical analyses. VBM preprocessing and
statistical analyses were performed using SPM8 along with the VBM8
(http://dbm.neuro.uni-jena.de) and diffeomorphic anatomical registra-
tion through exponentiated lie algebra (DARTEL; Ashburner, 2007)

toolboxes. VBM entailed five main steps: (1) bias correction of intensity
nonuniformity, (2) spatial normalization of images to a standardized
anatomical space, (3) extraction of the gray matter (GM) component
from the normalized images, (4) smoothing (8 mm FWHM) of the GM
images; and (5) statistical analysis of local differences in GM volume
significantly related with loss aversion (Ashburner and Friston, 2000). To
preserve actual GM values locally and perform volumetric analyses on
“modulated” GM volumes, we multiplied the GM segments by the non-
linear components derived from the normalization matrix, to account
for individual differences in brain orientation, alignment, and size
globally.

GM maps were voxelwise correlated with the individual loss-aversion
parameter using linear regression analyses. We first used whole-brain
analyses and the cytoarchitectonic probabilistic mapping implemented
in the SPM-Anatomy toolbox v1.8b (Eickhoff et al., 2005) to localize the
regions showing significant effects. Then, based on a priori hypotheses
(Ploghaus et al., 1999; De Martino et al., 2010; Sokol-Hessner et al.,
2013), we focused on positive correlations between behavioral loss aver-
sion and GM volume in the amygdala and posterior insula. These struc-
tures were anatomically defined by means of criteria independent from
our fMRI, SBM, and VBM results. We first used whole-brain statistical
parametric maps to apply a small-volume correction (SVC; Worsley et
al., 1996) to the probabilistic cytoarchitectonic subdivisions of the hu-
man amygdala and posterior insula. Namely, we focused on the latero-
basal (LB), superficial (SF), and centromedial (CM) amygdala nuclei
groups (Amunts et al., 2005), as well as on dysgranular (LD1) and gran-
ular (LG1, LG2) insular areas (Kurth et al., 2010), in both hemispheres.
In these maps, LB includes the lateral, basolateral, basomedial, and
paralaminar nuclei; CM the central and medial nuclei; and SF the ante-
rior amygdaloid area as well as the ventral and posterior cortical nuclei.
Recent meta-analytic connectivity analyses confirmed the role of LB and
CM nuclei groups in, respectively, coordinating high-level sensory input
(cue learning) and mediating attentional, vegetative, and motor re-
sponses (fear expression) (Bzdok et al., 2012). As a complementary ap-
proach, for each subject we extracted the voxel values (first eigenvariate)
of GM volume from the same 12 (six regions per hemisphere) cytoarchi-
tectonic subdivisions. The resulting values were averaged within clusters
and correlated with behavioral loss aversion using Pearson’s r coefficient
and a statistical threshold of p � 0.004167 (corresponding to p � 0.05
corrected for multiple comparisons). Based on a priori hypotheses (Bz-
dok et al., 2012), in a separate analysis we assessed the presence of a
positive correlation between GM volume in CM amygdala nuclei and
monetary performance (i.e., overall payoff).

SBM preprocessing and statistical analysis. SBM employs spatial Inde-
pendent Component Analysis (ICA) to decompose GM images into
maximally independent spatial sources. It thus identifies independent
patterns in GM images (i.e., “natural structural networks”; Xu et al.,
2009), which then enter statistical analyses based on the expression of
such patterns in individual subjects (i.e., a “loading coefficient”), to in-
vestigate group differences or correlations with variables of interest.

SBM entailed image preprocessing, ICA, and statistical analysis. The
former step is identical to that performed for VBM. Therefore, we carried
out spatial ICA on the same GM images that also entered VBM analyses,
using the GIFT toolbox (http://icatb.sourceforge.net) (Calhoun et al.,
2001). We performed ICA using a neural network algorithm (Infomax)
that attempts to minimize the mutual information of the network out-
puts to identify naturally grouping and maximally independent sources
(Bell and Sejnowski, 1995). ICA was repeated 250 times in Icasso
(http://research.ics.aalto.fi/ica/icasso/) and resulting components were
clustered to ensure the consistency and reliability of the results, which are
quantified using a quality index Iq ranging from 0 to 1 and reflecting the
difference between intracluster and extracluster similarity (Himberg et al.,
2004). We extracted 20 components from the GM images, all associated with
an Iq � 0.8 indicating a highly stable ICA decomposition (Allen et al., 2011).
For all components we performed correlation analyses between individual
loading coefficients and individual loss aversion, using Pearson’s r coefficient
and a statistical threshold of p�0.0025 (corresponding to p�0.05 corrected
for multiple comparisons). We obtained anatomical labels of clusters using
the Anatomy-Toolbox v1.8b (Eickhoff et al., 2005).
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Results
Behavioral results
Two of 56 subjects were perfectly consistent with the EV model
and did not exhibit any loss aversion. For the other subjects, the
EU model fitted markedly better their responses than the EV
model, indicating that they weighted gains and losses differently
(Fig. 1B). In fact the percentage of correctly predicted responses
for these 54 subjects increased from 82.1 � 10.6% for the EV
model to 91.2 � 5.5% for the EU model (paired t test, t(53) � 7.06,
p � 0.001). The likelihood-ratio test between the two models was
statistically significant (p � 0.01, see Materials and Methods) for
42 (80.8%) of the subjects who were not perfectly consistent with
the EV model. Among these subjects, 40 (95.2%) were loss averse
(� � 0.5) and only 2 (4.8%) were loss prone (� � 0.5). These
values fit with those reported in previous studies (Gachter et al.,
2007). Loss aversion and response uncertainty were not corre-
lated (r � 0.183, p � 0.178). Two-sample t tests highlighted no
significant gender difference in overall payoff (t(54) � 0.13, p �
0.893), as well as a nonsignificant trend toward larger loss aversion
(t(54) � 1.78, p � 0.079) and response uncertainty (t(54) � 1.76, p �
0.084) in females than males.

Loss aversion was significantly correlated with risk aversion
(r � 0.70, p � 0.0001). We thus ensured that the above results
could not be interpreted in terms of risk aversion rather than loss
aversion. First, the overall payoff was negatively correlated with
loss aversion (r � �0.32, p � 0.016), but not with risk aversion
(r � �0.18, p � 0.172). Indeed, a separate-slopes statistical
model showed that payoff was more strongly related with loss
aversion than with risk aversion (F(2) � 3.982, p � 0.021). Finally,

partial correlations showed that the relationship between payoff
and loss aversion remained significant even when controlling for
risk aversion (r � �0.27, p � 0.043). In the converse analysis,
controlling for loss aversion further reduced the correlation be-
tween payoff and risk aversion (r � 0.0602, p � 0.662).

fMRI results: neural loss aversion in bidirectional
gain/loss responses
Anticipating the magnitude of gains specifically increased brain
activity in a right VS cluster involving the ventral caudate nu-
cleus, putamen, and pallidum, as well as in bilateral orbitofrontal
cortex (medial orbital sulcus on the boundary between medial
and lateral orbitofrontal cortex), middle and superior frontal
gyri, dorsal anterior cingulate cortex, posterior cingulate cortex,
and portions of the dorsomedial thalamus projecting to temporal
and prefrontal cortex (Fig. 2A, Table 1, Anticipation of gains).

Whole-brain conjunction-null (Nichols et al., 2005) analyses
between “activation for gains” and “deactivation for losses” con-
trasts highlighted a bidirectional response in the left VS and in a
posterior frontomedial cluster involving the dorsal anterior cin-
gulate cortex and supplementary motor area (SMA; Fig. 2A, Ta-
ble 1, Bidirectional response). Correlation analyses highlighted a
significant relationship between individual loss aversion and
strength of activity in both the frontomedial cortex (deactivation:
r � 0.52, p � 0.0001; activation: r � 0.30, p � 0.025) and the VS
(deactivation: r � 0.38, p � 0.0048; activation: r � 0.27, p �
0.0436; Fig. 2B,C), with the slope of deactivation for increasing
losses being significantly greater than the slope of activation for
increasing gains (separate-slopes model; frontomedial cortex:
F(2) � 11.74, p � 0.0001; VS: F(2) � 6.389, p � 0.002; Figure
2B,C).

We also observed the opposite bidirectional pattern in the
right posterior insula/parietal operculum (OP). Here, indeed,
individual loss aversion correlated with activity in a cluster
where a bidirectional response reflected activation for losses
and deactivation for gains (Fig. 3A, Table 2, Bidirectional re-
sponse). In this case, the slope of the activation for increasing
losses was significantly greater than the slope of the deactivation
for increasing gains (separate-slopes model: F(2) � 7.532, p �
0.0008), and only the former was significantly related with behav-
ioral loss aversion (activation: r � 0.43, p � 0.0009; deactivation:
r � 0.25, p � 0.0685; Fig. 3B,C).

fMRI results: neural loss aversion in loss-specific responses
In addition, parametric analyses revealed the presence of a loss-
specific pattern in brain regions displaying loss-related activa-
tions in the absence of gain-related deactivations. These analyses
highlighted a widespread limbic and somatosensory network
specifically tracking the magnitude of potential losses (Fig. 3A,
Table 2, Anticipation of losses). Its limbic component involved
the amygdala and putamen in the right hemisphere. The somato-
sensory component included the middle cingulate cortex, as well
as the posterior insula and rolandic operculum bilaterally. The
latter cluster partially overlaps with the right hemispheric one
displaying the loss-oriented bidirectional response previously de-
scribed, but, unlike that region, it mostly involved the posterior
insula bilaterally.

As in the case of the mesocorticolimbic bidirectional response,
also the regions specifically tracking anticipated losses actively
displayed a neural loss-aversion response related with behavioral
loss aversion. Following Tom et al. (2007), we first computed
neural loss aversion at each voxel by subtracting the slope of the
gain response from the slope of the loss response. The results

Figure 1. A, Gambling task. Participants were asked to accept or reject mixed gambles
offering equal (50%) chances of gaining or losing different amounts of money, with possible
gains and losses sampled from a wide and symmetrical pay-off matrix (range: 1–99) and un-
correlated with each other. B, Behavioral results. Color-coded heatmap depicting the probabil-
ity of accepting the gamble (white, high; green, low) at different levels of gain/loss magnitude.
The color within each circle codes the proportion of participants having accepted the gamble.
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confirmed the somatosensory and limbic pattern of activity asso-
ciated with the anticipation of losses per se (Table 3, Anticipation
of losses vs gains). A whole-brain regression of behavioral loss
aversion on neural loss aversion then confirmed the direct rela-
tionship between the two measures, involving most of the regions
associated with loss anticipation per se, namely the right somato-
sensory cortex, posterior insula and rolandic operculum, middle
cingulate cortex, and right amygdala (Fig. 4A, Table 3, Neural loss
aversion: correlation between loss aversion and “losses minus
gains”). We also investigated regions in which greater loss aver-
sion was associated with stronger activity for the anticipation of
gains, compared with losses. This analysis highlighted most of the
structures associated with the anticipation of gains per se, namely
dorsal anterior cingulate cortex extending into the SMA, left an-
terior insula, and striatum bilaterally (Fig. 4A, Table 3, Neural
loss aversion: correlation between loss aversion and “gains minus
losses”). The posterior frontomedial cluster including dorsal an-
terior cingulate cortex and SMA was also more strongly activated
in association with gamble acceptance than rejection (Fig. 4B).

A structural loss-aversion network highlighted by SBM
and VBM
Multivariate morphometric analyses provided evidence for a
structural loss-aversion network. SBM employs spatial ICA to
decompose GM images into maximally independent spatial
sources without any a priori information. By taking into account
the inter-relationship between all voxels, it thus identifies natu-
rally grouped regions showing similar covariation between sub-
jects (i.e., natural structural networks), as well as the differential
expression of such patterns in individual subjects (a “loading
coefficient” allowing to test group differences, or correlations
with variables of interest). Individual loss aversion was signifi-
cantly correlated (r � 0.46, p � 0.000343) with only 1 of the 20
components estimated, involving bilaterally the amygdala (LB
and SF nuclei), hippocampus [enthorinal cortex (EC) and cornu
ammonis (CA)], putamen, ventral and dorsal striatum, and thal-
amus (Fig. 4C, Table 4, SBM results).

The mass-univariate approach of VBM highlighted more spe-
cific contributions of local variations of GM volume to individual

Figure 2. Neural anticipation of gains. A, The brain regions that were specifically activated by prospective gains (red), those displaying a bidirectional response (activation for gains, deactivation
for losses; blue), and those displaying a bidirectional response tuned to behavioral loss aversion (green) ( p � 0.05 corrected). B, Scatterplots showing the significant correlation between behavioral
loss aversion (x-axis) and neural loss aversion (y-axis) in the posterior frontomedial cortex (left) and ventral striatum (right). C, Scatterplots showing the loss-aversion tuning of the negative
component (deactivation for losses) of the bidirectional response in the same two regions (light-blue colors, activation for gains; yellow colors, deactivation for losses). Both parameter estimates of
neural activity and behavioral loss aversion are represented as z-values in the scatterplots.
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differences in loss aversion. Whole-brain analyses highlighted a
significant positive correlation between behavioral loss aversion
and GM volume in a left limbic cluster involving the CM, LB, and
SF amygdala nuclei and the hippocampal cornu ammonis, as well
as in the ventroposterior sector of the thalamus (Fig. 4C, Table 4;
VBM results). To provide a detailed anatomical characterization
of the role of amygdala and posterior insula in loss aversion, we
performed a priori regions of interest analyses on their major
cytoarchitectonic subdivisions. An SVC (Worsley et al., 1996) on
the probabilistic cytoarchitectonic subdivisions of the human
amygdala and posterior insula highlighted a significant positive
correlation between behavioral loss aversion and GM volume in
LB (p value � 0.00000097), CM (p value � 0.000092), and SF (p
value � 0.000003) left amygdala nuclei, as well as a trend in the
right LG1 insular area (p value � 0.008; compare with corrected
�-level � 0.004167). As a complementary approach, we corre-
lated behavioral loss aversion with the average GM volume in the
same 12 (six regions per hemisphere) cytoarchitectonic subdivi-
sions. The results confirmed a significant correlation between
loss aversion and GM volume in the left CM (r � 0.45, p value �
0.0005) and SF (r � 0.42, p value � 0.0013) amygdala nuclei, as
well as in the right granular LG1 insular area (r � 0.39, p value �
0.0026). Based on these results, and on the role of CM nuclei
groups in mediating the expression of fear (Bzdok et al., 2012), in
a separate analysis we assessed the specific a priori hypothesis that
GM volume in the left CM nuclei may be related with the behav-
ioral financial consequences of loss aversion (i.e., overall payoff).
The results confirmed a weak but significant negative correlation
between the two measures (r � �0.27, p value � 0.046).

In addition to the aforementioned behavioral data, several
control analyses excluded an interpretation of these results in
terms of risk aversion rather than loss aversion. First, separate-
slopes statistical models showed that loss aversion was more
strongly related than risk aversion with all morphometric mea-
sures, e.g., with GM volume in CM amygdala nuclei (F(2) � 8.016,
p � 0.0005), in the granular LG1 insular area (F(2) � 5.048, p �
0.008), and in the loss-aversion structural network highlighted by
SBM (F(2) � 10.442, p � 0.0001). Second, partial correlations
showed that in all these regions the relationship between loss
aversion and GM volume remained significant even after controlling
for risk aversion (CM amygdala nuclei: r � 0.31, p � 0.020; granular
LG1 insular area: r � 0.29, p � 0.030; loss-aversion structural net-
work: r � 0.28, p � 0.036). In the converse analysis, controlling for
loss aversion resulted in no significant relationship between risk
aversion and GM volume in CM amygdala nuclei (r � 0.05, p �
0.738), granular LG1 insular area (r � �0.001, p � 0.993) and loss-
aversion structural network (r � 0.11, p � 0.422).

Discussion
Our results show that anticipating outcomes when making
choices simultaneously engages multiple neural mechanisms, re-
flecting both appetitive and aversive drives, in which the higher
neural responsiveness to prospective losses than gains reflects
individual differences in loss aversion.

Consistently with previous studies (Tom et al., 2007; Plass-
mann et al., 2010; Chib et al., 2012), one such mechanism in-
volves bidirectional responses of a single mesocorticolimbic
network. Within this network, stimuli or actions acquire a moti-

Table 1. Neural anticipation of gains and bidirectional responses

Cluster size (number of voxels) Hemisphere Anatomical region

MNI

T score Cluster p valuex y z

Anticipation of gains
301 R Putamen 18 8 �6 3.75 0.02

R Caudate nucleus 18 18 2 3.28
R Pallidum 22 �6 �6 4.93

1204 L Middle frontal gyrus �28 36 18 4.16 �0.001
L Superior frontal gyrus, orbital part �18 54 �4 3.76
L Middle frontal gyrus, orbital part �30 46 �8 3.62

362 R Superior frontal gyrus, orbital part 18 52 �12 4.61 0.01
R Middle frontal gyrus, orbital part 30 44 �10 3.01

434 R Superior frontal gyrus 22 50 24 3.38 0.006
1026 L Posterior cingulate cortex �6 �42 18 4.51 �0.001

R Posterior cingulate cortex 6 �42 8 3.90
1238 R Cuneus 18 �58 38 3.97 �0.001

R Precuneus 16 �60 36 3.90
404 R Thalamus (temporal) 6 �6 4 4.37 0.007

L Thalamus (prefrontal) �12 �10 �2 3.44
Bidirectional response: activation for gains,

deactivation for losses, correlation
with loss aversion

265 L Putamen/caudate nucleus* �16 18 �2 4.30 �0.001
L Putamen �18 10 4 4.05
L Caudate nucleus �14 14 10 4.01
L Putamen �24 8 �4 4.00
L Insula lobe �28 20 6 3.79
L Putamen �22 18 0 3.59

269 L Middle cingulate cortex* �4 28 32 4.44 �0.001
L SMA �4 16 46 4.09
L Superior medial gyrus �2 28 38 3.85
R Superior medial gyrus 10 24 42 3.82
R Middle cingulate cortex 4 26 32 3.66
L Superior frontal gyrus �12 28 38 3.57
L Anterior cingulate cortex �6 32 26 3.51

Asterisks indicate the regions whose bidirectional response is depicted in Figure 2.
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vational significance for their potential “reward” value, which is
anticipated when the same stimuli or actions are evaluated to
make further choices (i.e., select actions) (Doya, 2008; Hare et al.,
2010) (Fig. 2A, Table 1). Its key nodes in the left VS and posterior
frontomedial cortex displayed joint sensitivity to gains and losses,
and particularly a neural loss-aversion response whereby larger
loss-related deactivations, compared with gain-related activa-
tions, bias choices toward the avoidance of aversive outcomes
(Fig. 2B,C, Table 1, Bidirectional response). Additionally, an op-
positely valenced bidirectional pattern involves the right poste-
rior insula and parietal operculum (Fig. 3A, Table 2, bidirectional
response), where the slope of the activation for increasing losses is

greater than the slope of the deactivation for increasing gains, and
only the former is significantly related with loss aversion (Fig.
3B,C). Regardless of their positive/negative direction, such bidi-
rectional responses thus appear to bias the evaluation of antici-
pated outcomes, through a preferential tuning to anticipated
losses rather than gains that reflects the degree of individual loss
aversion.

A second, “loss-specific” neural mechanism in which the an-
ticipation of outcomes reflects individual differences in loss aver-
sion involves the right amygdala and putamen, as well as specific
portions of the right posterior insula. The latter regions, indeed,
were activated by anticipated losses in the absence of gain-related

Figure 3. Neural anticipation of losses. A, The brain regions that were specifically activated by prospective losses (red), those displaying a bidirectional response (activation for losses, deactivation
for gains; blue), and those displaying a bidirectional response tuned to behavioral loss aversion (green) ( p � 0.05 corrected). B, Scatterplots showing the significant correlation between behavioral
loss aversion (x-axis) and neural loss aversion (y-axis) in the right posterior insula and parietal operculum. C, Scatterplots showing the loss-aversion tuning of the positive component (activation for
losses) of the bidirectional response in the same region (yellow colors, activation for losses; light-blue colors, deactivation for gains). Both parameter estimates of neural activity and behavioral loss
aversion are represented as z-values in the scatterplots.

Table 2. Neural anticipation of losses and bidirectional responses

Cluster size (number of voxels) Hemisphere Anatomical region

MNI

T score Cluster p valuex y z

Bidirectional response: activation for losses, deactivation
for gains, correlation with loss aversion

175 R Rolandic operculum/Insula (OP1)* 58 �20 16 4.98 �0.001
R Supramarginal gyrus (OP1) 54 �26 18 3.17

Anticipation of losses
1019 L Insula (LG1/LG2) �38 �22 8 4.52 �0.001

L Insula lobe (OP3) �36 �14 10 3.83
L Rolandic operculum (OP1/OP2) �34 �26 16 3.43

893 R Superior temporal gyrus 42 �18 0 5.92 �0.001
R Amygdala (CM/SF)/putamen 28 2 �10 5.15
R Insula lobe ((LG1/LG2/OP1) 36 �28 18 3.37

383 L Middle cingulate cortex �12 �32 48 4.51 0.032
R SMA 8 �28 54 3.43

Asterisk indicates the region whose bidirectional response is depicted in Figure 3.
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deactivations (Fig. 3A, Table 2, Anticipation of losses), and dis-
played a neural loss-aversion response significantly related with
individual loss aversion (Fig. 4A, Table 3, Anticipation of losses vs
gains and Neural loss aversion: correlation between loss aversion
and “losses minus gains”). These structures are critical in the
detection of, as well as in the physiological and behavioral re-
sponse to, aversive events and potential threats (Sehlmeyer et al.,
2009; Schlund et al., 2010; LeDoux, 2012). In particular, the cen-
tral and basal nuclei of amygdala mediate the output to other
structures involved in the expression of fear and anxiety, and
particularly avoidance behavior via the striatum (Darvas et al.,
2011). Moreover, this process involves the cingulate cortex and
posterior insula (Fiddick, 2011), i.e., the sensory component of
the so-called pain-matrix, a brain “defensive” system signaling
potential threats (Legrain et al., 2011). The posterior insula re-
ceives viscerosensory and nociceptive information about the
physiological body state from the ventroposterior medial nucleus
of the thalamus (Craig, 2002), and in turn modulates sympathetic
arousal via descending projections to autonomic nuclei (Critch-
ley et al., 2002). Indeed, an augmented anticipation of aversive
bodily states in the insula (Ploghaus et al., 1999; Shi and Davis,
1999) has been associated with critical facets of loss aversion such

as anxious affects and avoidance behavior (Camerer, 2005;
Paulus and Stein, 2006).

Our fMRI results thus show a relationship among loss antici-
pation, behavioral loss aversion, and neural activity in somato-
sensory and limbic regions involved in detecting and avoiding
aversive outcomes. Along with the observation that bilateral
amygdala lesions result in the lack of loss aversion despite normal
processing of EV and risk (De Martino et al., 2010), these results
point to a role of amygdala in biasing the anticipation of out-
comes toward their negative affective consequences, such as fear
and anxiety, represented in posterior insula. Such an aversive
signal of prospective loss may either be learned via fear condition-
ing, i.e., the process of acquisition, storage, and expression of
fears mediated by the amygdala (Phelps and LeDoux 2005), or
reflect unconditioned responses biasing actions that may entail
an immediate threat. Distinguishing between these hypotheses
will require paradigms explicitly addressing the effect of past ex-
perience of loss on subsequent behavioral adaptations (i.e., learn-
ing). While the origins of loss aversion thus remain an open issue,
our results show the role of limbic and somatosensory structures
in mediating a prospective aversive signal that biases decision
making toward the avoidance of potential losses despite poten-

Table 3. Neural loss aversion

Cluster size (number of voxels) Hemisphere Anatomical region

MNI

T score Cluster p valuex y z

Anticipation of losses versus gains
2851 L Superior temporal gyrus �56 �24 4 5.32 �0.001

L Rolandic operculum (OP1/OP2) �40 �32 16 5.28
L Insula (LG1/LG2) �36 �22 2 4.85
L Angular gyrus �44 �72 34 3.40
L Supramarginal gyrus �42 �36 24 3.20

2359 R Insula lobe (LG1/LG2) 40 �14 2 4.96 �0.001
R Insula lobe (OP1) 36 �28 18 4.20
R Amygdala (CM/SF)/putamen 28 0 �8 4.19
R Superior temporal gyrus 54 �26 12 4.14
R Rolandic operculum (OP1/OP2) 42 �24 16 3.76

683 L Middle cingulate cortex �12 �32 48 4.72 �0.001
R SMA 4 �16 60 3.09

Neural loss aversion: correlation between loss
aversion and “losses minus gains”

1197 L Superior temporal gyrus �54 �32 20 5.36 �0.001
L Rolandic operculum (OP4) �54 �2 6 4.14

2649 R Superior temporal gyrus 62 �12 �4 5.75 �0.001
R Rolandic operculum (OP4) 52 4 2 5.03
R Supramarginal gyrus 52 �34 24 5.03
R Amygdala (CM/SF) 24 �2 �16 4.92
R Insula lobe 42 �10 �8 4.48

483 R Middle cingulate cortex 10 �22 44 4.96 0.007
L Middle cingulate cortex �6 �12 42 4.02

Neural loss aversion: correlation between loss
aversion and “gains minus losses”

468 L Ventral caudate nucleus �12 16 0 4.68 �0.001
L Dorsal caudate nucleus �10 6 12 4.80
R Ventral caudate nucleus 14 14 2 4.22
R Dorsal caudate nucleus 14 8 12 4.19
R Pallidum 18 4 6 3.85

1592 L SMA �6 20 44 7.54 �0.001
R SMA 10 20 52 6.41
L Superior medial gyrus �4 26 40 6.28
R Superior medial gyrus 8 22 44 6.12

162 L Insula lobe �34 12 �2 4.88 0.025
253 L Inferior parietal lobule �28 �54 46 4.46 0.003

L Angular gyrus �28 �54 36 3.59
162 L Thalamus (prefrontal) �8 �16 �6 5.85 0.025
139 R Thalamus (prefrontal) 10 �16 0 5.26 0.045
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Table 4. Neurostructural correlates of loss aversion

Cluster size (number of voxels) Hemisphere Anatomical region

MNI

T score Cluster p valuex y z

SBM results: a “loss-aversion structural network”
1876 L Amygdala (LB/SF)/hippocampus (EC/CA) �18 �7 �21 6.31 �0.001
1512 R Amygdala (LB/SF)/hippocampus (EC/CA) 18 �6 �23 6.39 0.0028
1274 L Ventral caudate nucleus �12 18 0 6.21 0.0066

L Dorsal caudate nucleus �14 15 12 5.00
L Putamen �21 11 �3 4.88

1882 R Ventral caudate nucleus 14 20 �2 5.68 �0.001
R Dorsal caudate nucleus 15 14 15 5.45
R Putamen 24 11 �2 7.94

3112 L Thalamus (prefrontal) �9 �25 7 8.60 �0.0001
R Thalamus (temporal) 2 �15 6 10.89

VBM results: voxelwise positive correlations between
GM volume and loss aversion

1051 L Amygdala (CM/SF/LB) �17 �9 �8 6.38 0.015
2203 L Thalamus �2 �27 10 4.74 0.0001

R Thalamus 3 �27 7 4.78

Figure 4. A, Neural loss aversion. The brain regions in which loss aversion was positively related with neural activity underlying the anticipation of losses (compared with gains; yellow) and gains
(compared with losses; blue) ( p � 0.05 corrected). B, Acceptance versus rejection. The brain regions associated with acceptance, compared with rejection, of the mixed-gamble (while controlling
for the anticipation of outcomes) are shown in red, along with those displaying a bidirectional response (activation for gains, deactivation for losses; blue) and those displaying a bidirectional
response tuned to behavioral loss aversion (green) ( p � 0.05 corrected). C, Neurostructural correlates of loss aversion. The loss-aversion structural network highlighted by SBM (blue), as well as the
voxels where GM volume was positively related with loss aversion highlighted by VBM (red) ( p � 0.05 corrected). Violet and yellow colors highlight the brain structures that were associated with
loss aversion in both SBM and VBM analyses (left amygdala and thalamus; violet), as well as in both SBM and fMRI neural loss-aversion analyses (right amygdala; yellow).
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tially equivalent gains. Moreover, by coupling behavioral analy-
ses with morphometric techniques, we provide novel evidence on
a neurostructural marker of loss aversion in amygdala nuclei and
posterior insula.

Indeed, multivariate morphometric analyses revealed a struc-
tural loss-aversion bilateral network including amygdala, hip-
pocampus, putamen, ventral and dorsal striatum, and thalamus
(Fig. 4C, Table 4, SBM results). All these structures are key nodes
of a network underpinning the detection of potential threats
(Phelps and LeDoux, 2005; Sehlmeyer et al., 2009), although their
specific role in generating a prospective loss signal is far from
being clear. The striatum codes prediction errors, i.e., the differ-
ence between expected and actual outcomes, a critical learning
signal in reinforcement-learning models (Schultz, 2007, 2013).
Importantly, prediction errors code expectations about punish-
ments in addition to rewards, that is an “aversive” prediction
error (Seymour et al., 2007; Delgado et al., 2008) contributing to
the anticipation of financial losses (Delgado et al., 2011). More-
over, in apparent contrast with its aforementioned role in detect-
ing threats, the amygdala mediates avoidance learning also by
predicting relief (Rogan et al., 2005; Seymour et al., 2005; Sangha
et al., 2013). Therefore, further evidence is needed to unveil the
precise role played in generating loss aversion by the structures
encompassing the structural network highlighted by SBM. VBM
analyses revealed more specific contributions to this process by a
sector of the thalamus engaged by noxious stimulations (Paulson
et al., 1998), and by right posterior insula and CM amygdala
nuclei, likely reflecting the output of the anticipatory process and
particularly the avoidance of those actions that may result in the
negative affects associated with monetary losses (Fig. 4C, Table 4,
VBM results). Individual differences in loss aversion and its be-
havioral financial consequences are thus specifically related to
GM volume in amygdalar and para-amygdalar nuclei, and par-
ticularly CM nuclei mediating avoidance behavior. This result
appears to ground loss aversion in a neural mechanism whereby
individuals come to avoid actions that may entail aversive out-
comes, whose sensory properties are represented in amygdala
and posterior insula.

These neural structures likely compute a prospective loss signal
that is integrated with other information, including gain-related sig-
nals, in downstream processing structures. It is likely that one such
structure is the striatum, via well known connections with the
amygdala (Amaral et al., 1992), where the integration of loss- and
gain-related signals may generate the bidirectional response previ-
ously described. We observed the same bidirectional response in the
posterior frontomedial cortex, which, alongside the striatum, has
been associated with cost-benefit analyses (Croxson et al., 2009). The
concurrent presence of gain and loss signals makes this region well
suited for processing the trade-off between appetitive and aversive
drives associated with a potential action. Interestingly, the posterior
frontomedial cortex, alongside the lateral frontal cortex involved in
cognitive control and action selection (Koechlin et al., 2003), was
also more strongly activated by accepted, compared with rejected,
gambles (Fig. 4B). This pattern of activity likely reflects the weighting
of prospective gains and losses, overcoming the spontaneous tuning
to losses and leading to gamble acceptance and superior decisional
performance, when potential benefits are perceived as sufficiently
higher than costs.

In conclusion, we contribute to the ongoing debate on the
neural system(s) anticipating prospective choice outcomes (Tom
et al., 2007; De Martino et al., 2010) by showing that multiple
neural mechanisms are recruited while making choices, and that
the biased anticipation of negative outcomes leading to loss aver-

sion involves specific somatosensory and limbic structures. Im-
portantly, despite a significant correlation between loss aversion
and risk aversion, control analyses confirmed that both behav-
ioral and neuroimaging findings reflect a disproportionate antic-
ipation of losses, rather than risk. Our results support the view
that the inconsistencies between previous neuroimaging (Tom et
al., 2007) and lesional (De Martino et al., 2010) data on loss
aversion may result from methodological issues. The authors of
the latter study argued that, while their range of gains and losses
was wide and symmetrical, in the Tom et al. (2007) study losses
were short ranged and generally smaller than gains. The reduced
range of potential losses, along with the overall positive expected
value of the gambles, may have thus elicited only a weak and
undetectable amygdala activity (De Martino et al. 2010). This
interpretation is supported by the present study, in which gains
and losses were sampled from a symmetrical and wide payoff
matrix. Most importantly, we provide direct and novel morpho-
metric evidence showing that a neurostructural signature of loss
aversion can be found in a network involving amygdala, thala-
mus, striatum, and posterior insula. All these structures play a
critical role in detecting threats and prepare the organism for
appropriate action (LeDoux, 2012), with the connections be-
tween CM amygdala nuclei and the striatum mediating the
avoidance of aversive events (Schlund et al., 2010). Our results, by
showing a significant relationship among increased GM volume
in CM amygdala nuclei, larger degree of loss aversion, and
smaller monetary earnings, highlighted a direct link between in-
dividual differences in the structural properties of this network
and the actual consequences of its associated behavioral defense
responses in the financial domain.
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