
1

Introduction to
Linguistic Computation

and Complexity Theory

CRISTIANO CHESI
N E T S , I U S S

L A B O R ATO R Y FO R
N E U R O L I N G U I S T I C S ,

CO M P U TAT I O N A L
L I N G U I S T I C S A N D

T H E O R E T I C A L S Y N TA X

Ph.D. in Theoretical and Experimental Linguistics (TEL)

Index

 Formal Grammars
 Formal approaches to Linguistic Competence
 Phrase Structure Grammars (PSG) and Chomsky’s hierarchy

 A theory for (linguistic) computation
 (Universal) Turing Machines (TM) and other formalisms
 Introduction to computability, complexity e automata theory.
 Parsing and complexity

 Advances in linguistic formalisms and processing
 Competence & Performance
 Minimalist Derivations
 Complexity as intervention

Intro to linguistic computation C. CHESI 2

Essential
References

Introductory
 Jurafsky, D. & Martin, J. H. (2009)

Speech and Language Processing. Prentice-Hall.
http://www.cs.colorado.edu/~martin/slp.html
(Only chapters 2, 12)

 Partee B., A. ter Meulen & R. Wall (1990) Mathematical Methods
in Linguistics, Springer, 1990
(Only chapters 16 – 18)

Advanced
 Chesi C. (2021) Expectation-based Minimalist Grammars

https://lingbuzz.net/lingbuzz/006135
 Chesi C. (2015) On directionality of phrase structure building.

Journal of Psycholinguistic Research. 44(1)
http://dx.doi.org/10.1007/s10936-014-9330-6

 Chesi, C., & Canal, P. (2019). Person features and lexical
restrictions in Italian clefts. Frontiers in Psychology, 10, 2105.
http://dx.doi.org/10.3389/fpsyg.2019.02105

 Van Dyke, J. A., & McElree, B. (2006) Retrieval interference in
sentence comprehension. Journal of Memory and Language,
55(2), 157-166.

Intro to linguistic computation C. CHESI 3

Extended
References

 Baddeley, A. (2013) Essentials of human memory (classic
edition). Psychology Press.

 Chesi C., A. Moro (2014) Computational complexity in the
brain. in Frederick J. Newmeyer and Laurel B. Preston (eds.),
Measuring Linguistic Complexity. Oxford: OUP

 Chesi C. (2015) Il processamento in tempo reale delle frasi
complesse. In atti del convegno “Compter Parler Soigner”,
E.M. Ponti (ed). Pavia University Press.

 Hopcroft, Motwani & Ullman (2001) Introduction to the
automata theory, languages and computation. Addison-
Wesley. Boston

 Stabler, E. 1997. Derivational minimalism. in Retoré, ed.
Logical Aspects of Computational Linguistics. Springer

 Sprouse, J., Wagers, M., & Phillips, C. (2012). Working-memory
capacity and island effects: A reminder of the issues and the
facts. Language, 88

Intro to linguistic computation C. CHESI 4

1 2

3 4

2

Formal grammars
STAGE I

Intro to linguistic computation C. CHESI 5

Linguistic Competence
What kind of competence (information structure) do we have?
 A word can start by wo... (word) but not by wb...
 The s in “sings” is different from the one in “roses”
 “the rose is beautiful” Vs. *“the is beautiful rose”
 “The cat chases the dog” >

subj: cat(agent); verb: chase(action); obj: dog(patient)
 ?the television chases the cat
 “the houses” Vs. “some house”

 Linguistic competence is a finite knowledge that allows us to:
 Recognizing as grammatical an infinite set of expressions
 Assigning to them the correct meaning(s)

Intro to linguistic computation C. CHESI 6

Linguistic Competence
What to include:
 Word order > meaning

e.g. I saw a man in the park with a binocular

 Agreement
e.g. *la mela rosso (lit. thefem redfem applemas)

Gianni ha visto Maria vs. Gianni l’ha vista

 Non-local dependenccies (pronominal binding, syntactic movement)
e.g. cosai credi che Maria abbia chiesto a Luigi di comprare _i?

(whati do you think (that) M. asked to L. to buy _i ?)
Giannii promette a Mariaj di _ i/*j andare a trovarlaj/k
Giannii chiede a Mariaj di _ *i/j andare a trovarla*j/k

Gi promises/asks to M. j _ i/*j *i/j to go to visit her i/k *j/k

Intro to linguistic computation C. CHESI 7

Grammar adequacy
 Adequacy: a grammar must provide an adequate description of the linguistic

reality we want to describe.

We will consider three levels of adequacy:

 Observational: the language described by the grammar coincides with the one we want to
describe

 Descriptive: the grammatical analysis provides relevant structural descriptions that are
coherent with the speakers’ intuitions

 Explicative: the grammar is learnable and it permits to draw conclusions on what’s more or
less difficult to be processed.

Intro to linguistic computation C. CHESI 8

5 6

7 8

3

Basic formal notions
 Finite sets definition: A = {a, b, c}

 Infinite (inductive) set definition: A = {x: x has a propriety p}

 Ordered sets (n-tuples): A = (a, b, c)

 Cardinality: |A| = number of items of A

 Cartesian product: A = {a, b, c} B = {x, y}
A X B = {(a, x), (b, x), (c, x), (a, y), (b, y), (c, y)}

 Union: A  B = {x: x  A or x  B}

 Concatenation: A  B = {xy: x  A and y  B}

 Star (Kleene operator): A* = {x1x2 … xn : n  0 for any xi  A}

Intro to linguistic computation C. CHESI 9

Basic formal notions
 Indexes: xk = kth element in a series

xk = a series of k elements
XR = mirror image of X

 Function: f(x) → y (x = Domain, y = Range):

 Predicates: f(x) → {true, false}

 n-places predicates: f(x, y … z) → {true, false}

 Equivalence relation: binary predicates R for which the following properties
are valid:
 R is reflexive, that is, for any x, xRx;
 R is symmetric, that is, for any x and y, if xRy then yRx;
 R is transitive, that is, for any x, y and z, if xRy and yRz then xRz;

Intro to linguistic computation C. CHESI 10

Basic formal notions
 Graphs

Nodes Vertex

Non directional Directional

Intro to linguistic computation C. CHESI 11

Basic formal notions
 Graphs

Cyclic Acyclic Trees

Degree: number of in/out vertex of a node

Intro to linguistic computation C. CHESI

root

leaves

12

9 10

11 12

4

How to formalize a grammar
 A = Alphabet

Finite set of chars (A* = the set of all possible strings built concatenating elements of A;  is
the null element)

 V = Vocabulary
(potentially in)finite set of words, built concatenating elements of A
(V  A*)

 L = Language
(potentially in)finite set of sentences, built concatenating elements of V
(L  V*)

Intro to linguistic computation C. CHESI 13

How to formalize a grammar
 A formal grammar for a language L is a set of rules that allows us to recognize

and generate all (and only) the sentences belonging to L and (eventually)
assign to them an adequate structural description.

 A Formal Grammar G must be:

 explicit (each grammaticality judgment must be just the result of the mechanical application
of the rules)

 consistent (the very same sentence can’t be judged both grammatical and ungrammatical at
the same time)

Intro to linguistic computation C. CHESI 14

How to formalize a grammar
 Phrase Structure Grammar, PSG (Chomsky 1965)

is an ordered 4-tuple (VT, VN, →, {S}):

VT is the terminal vocabulary

VN is the non-terminal vocabulary (VT  VN = V)

→ is a binary, asymmetric, transitive relation defined on V*, also known as
rewriting rule:
for any symbol AVN φAψ→ φτψ for some φ, τ, ψ  V*

{S} is a subset of VN defined as the axiom(s) of the rewriting rules.
By default, S (Sentence) is the only symbol present in this set.

Intro to linguistic computation C. CHESI 15

How to formalize a grammar
 Give two strings φ and ψ  V* there is a

φ-derivation of ψ if φ →* ψ.

 If there is a φ-derivation of ψ then we conclude that φ dominates ψ. Such a
relation is reflexive and transitive.

 A φ-derivation of ψ is terminated if:
 ψ  VT*
 There is no χ such that a ψ-derivation of χ exists

 Given a grammar G, a language generated by G, is said L(G), that is the set φ of
all possible strings for which a terminated S-derivation of φ exists

Intro to linguistic computation C. CHESI 16

13 14

15 16

5

Structural description
(syntactic tree)

 A Structural Description is a 5-tuple
(V, I, D, P, A) such that:

V is a finite set of vertices (e.g. v1, v2, v3…)
I is a finite set of labels (e.g. S, DP, VP, the, table…)
D is a dominance relation, which is a weak relation (namely a binary, reflexive antisymmetric

and transitive relation) defined on V
P is a precedence relation, which is a strict order (namely a binary, anti-reflexive

antisymmetric and transitive relation) defined on V
A is an assignment function;

i.e. a non surjective relation from V to I

Intro to linguistic computation C. CHESI 17

Generative capacity and equivalence
 The generative capacity indicates the set of sentences that can be generated;

two grammars can be considered equivalent in two senses:

 Weak, if only the set of sentences is considered

 Strong, if we also consider the structural description associated

Intro to linguistic computation C. CHESI 18

Decidability
 A set  is considered

 decidable (or recursive) if for any element e, belonging to the universe set, there is a
mechanical procedure that in a finite set of steps terminates by saying if e  or  to 
(not belonging to  implies that e belongs to the complement of  defined as)

 Recursively enumerable when a procedure exists that enumerates all and only the
elements of Σ

Intro to linguistic computation C. CHESI 19

Regular Grammars / Languages
 Regular grammars admit rules of this kind:

A  xB

Or (systematically) of this kind:

A  Bx

The languages generated by such grammars are named Regular

Intro to linguistic computation C. CHESI 20

17 18

19 20

6

Automata and computation
 Automata are mathematical computational models composed by states and transitions among states

 Example of automaton: electric switch!
 0 = on
 1 = off
 -> = push

Intro to linguistic computation C. CHESI

0 1

21

Finite State Automata (FSA)
 Finite-State Automata (FSA)

are 5-tuples <Q, Σ, q0, F, δ> where:

Q = non-null, finite set of states
Σ = non-null, finite set of characters (alphabet) acceptable as input
q0 = initial states, such that q0  Q
F = final states, such that F  Q
δ = finite set of rules defined from QxΣ to Q

Intro to linguistic computation C. CHESI 22

FSA as word processors
 A set of FSA is not just a mechanism that recognizes or generates a lexical

item, but it might represent a sentence (or a language…).
 FSA recognizing word casa and its plural form:

 Q = {q0, q1, q2, q3, q4},
 Σ = {c,a,s,e,#},
 Q0={q0},
 F ={q4},
 δ =

Intro to linguistic computation C. CHESI 23

q0 q1 q2 q3 q4
c a s a

e

q0 q1 q2 q3 q4

c q1

a q2 q4

s q3

e q4

Finite State Grammars
(Regular Languages)

q0

qf

q1

the dog q2

q3

q4 q5is

Intro to linguistic computation C. CHESI 24

21 22

23 24

7

Regular Expressions (RE)
We can use Regular Expressions to query corpora for instance.

RE are algebraic notation to express sets of strings.

 The key of a RE is the identification pattern composed by alphanumeric chars
(including spacing and punctuation) and special signs indicating precise
relations among chars.

RE Correspondence E.g. Identified pattern

[Cc]athedral Cathedral or cathedral The cathedral is gorgeous

[^a-z] All but not low chars Il duomo è ...

sai?d said or sad You must be sad

ma.t Any char between a and t malt or matt

bu* b followed by any (even null) number of u buuuuuu! or b!

^T Vs. e$ ^ = string beginning; $ = string end The house

passe(s|d) | expresses the logical disjuction passes or passed

* Escape char A*

Intro to linguistic computation C. CHESI 25

RG, FSA and RE equivalence
 Regular Grammars (RG), Finite State Automata (FSA) and Regular Expressions

(RE) are equivalent, i.e. they describe the very same set of languages: Regular
Languages.

 Proof by construction

Intro to linguistic computation C. CHESI 26

Do you know Eliza?
 Eliza (Weizenbaum, anno 1966):

 Human: Well, my boyfriend made me come here.
 ELIZA: Your boyfriend made you come here?
 Human: He says I'm depressed much of the time.
 ELIZA: I am sorry to hear you are depressed.
 Human: It's true. I'm unhappy.
 ELIZA: Do you think coming here will help you not to be unhappy?

Intro to linguistic computation C. CHESI 27

Eliza uses regular expressions!
 RE and Substitution
● s/Regular_Expression_1/Regular_Expression_2/
● s/ www\.[a-z]*\.com / www\.wow\.it/

 Registers: using block operators (round brackets indicates a block), we can
reuse a matched pattern:

● s/ the (house|car) has been bought by (Mary|John)/ \2 bought the \1 /

 Substitutions by ELIZA:
● s/ I’m [.* ?](depressed|sad)/I’m sorry to hear that you are \1/
● s/ everybody is (.*) / in which sense they are \1?/
● s/ always / can you make a specific example?

Intro to linguistic computation C. CHESI 28

25 26

27 28

8

Turing’s Test (the imitation game)

A? B?

B

A

Intro to linguistic computation C. CHESI 29

Trivia: chatbots
Programming a chatbot
for like/dislike patterns

using «Scratch»

Intro to linguistic computation C. CHESI 30

Trivia: chatbots

Intro to linguistic computation C. CHESI 31

Alexa Cortana

Google Assistant

Trivia: ChatGPT
(GPT-3.5)

https://openai.com/api/

Intro to linguistic computation C. CHESI 32

29 30

31 32

9

How to determine if a string can be
generated by a Regular Grammar?

 Pumping lemma for Regular Grammar
If A is a Regular Language, then there is a number p (expressing «pumping»
magnitude), for which, if s is a generic string A of length at least equal to p,
then it can be split in 3 parts,
s = xyz such that:
I. For any i  0, xyiz  A
II. |y|  0
III. |xy|  p

 anbn (counting recursion) cannot be generated by Regular Grammars (no way
to pump a number of as followed by the very same number of bs)

Intro to linguistic computation C. CHESI

q0 qfq1
x z

y

33

Context-Free Grammars
 Context-Free Grammars (CFG) admits only this kind of rules:

A   (where  is any sequence of (non)terminal symbols)

Languages generated by CFG are named Context-Free Languages

 Any CFG can be «converted» in a (weakly) equivalent CFG in the
Chomsky Normal Form (CNF):

A  BC
A  a

Intro to linguistic computation C. CHESI 34

Describing syntactic ambiguity

NP

S

NP PP

Pro V D N P D N

VP

I the withsaw man the binocular

Intro to linguistic computation C. CHESI 35

Describing syntactic ambiguity

NP

S

NP PP

Pro V D N P D N

VP

I the withsaw man the binocular

Intro to linguistic computation C. CHESI 36

33 34

35 36

10

Describing syntactic ambiguity
 Rules with the same left-side symbol should be present in the grammar to

permit ambiguity:

 VP  V NP
 VP  V NP PP

 NP  D N
 NP  D N PP

Intro to linguistic computation C. CHESI 37

Push-Down Automata
 A Push-Down Automata (PDA) is a finite state automata endowed with a memory stack; PDAs are

defined by 6-tuples <Q, Σ, q0, F, δ, > where:

Q = finite and non-null set of states
Σ = finite and non-null set of characters accepted as input (alphabet)
q0 = initial state(s), such that q0  Q
F = final states(s), such that F  Q
δ = finite and non-null set of transitional rules defined from Q x Σ x  to Q x 
 = finite and non-null set of characters that can be stored in memory ( can have the same
symbols as Σ)

Intro to linguistic computation C. CHESI 38

PDA can parse mirror recursion
 XXR

 Q = {q0, q1, q2, q3, q4},
 Σ /  = {a, b, ε},
 Q0={q0},
 F ={q4},
 δ =

Intro to linguistic computation C. CHESI 39

q0 q1 q2 q3 q4
a b … ε/ε

Push(a)
a
b

Push(b)

Pop(…)

q0 q1 q2 qn q4

a q1
push(a)

b
q2

push(b)

… qn
pop(…)

ε q4

CFG and PDA equivalence
 Context-Free Grammars (CFG), and Push-Down Automata (PDA) are

equivalent (i.e. they describe the very same set of languages: the Context-Free
Languages).

«Demonstration» by construction:
1. For any S rule, create a PDA q0 rule such that:

(q0, ε, ε) → (q1, S)
2. For any other CFG rule such that A → x, create PDA rules such that:

(q1, ε, A) → (q1, x)
3. For any symbol a : a  VT , create PDA rules such that:

(q1, a, a) → (q1, ε)

Intro to linguistic computation C. CHESI 40

37 38

39 40

11

Limits of CFGs?
 Pumping lemma for Context-Free Grammars

If A is a Context-Free Language, then there is a number p (expressing the
«pumping» length), for which, if s is a string of A of length at least equal to p,
then it can be divided in 5 parts,
s = uvxyz such that:
I. For any i  0, uvixyiz  A
II. |vy|  0
III. |vxy|  p

 E.g. neither anbncn nor XX is not generable by CFGs.

C. CHESI

S

R

R

u v x y z

Intro to linguistic computation 41

Inclusion relations among Grammars
 Chomsky’s Hierarchy (1956, 59):

Type 3: Regular Grammars (equivalent device: Finite State Automata)
A  xB
Type 2: Context Free Grammars (equivalent device: Push-Down Automata)
A  
Type 1: Context Sensitive Grammars (e.g.: Linear-Bounded Automata)
A   (  )
Type 0: Turing Equivalent Grammars (e.g. Augmented Transition Networks)
  (  )

Intro to linguistic computation C. CHESI 42

Chomsky’s Hierarchy

Intro to linguistic computation C. CHESI

Context-Sensitive languages

Context-Free languages

Regular languages

Turing Equivalent languages

43

Where are Natural Languages?
 Natural languages are NOT generable by Regular Grammars

(Chomsky 1956):

If X then Y (with A and B potenzially of the form “if X then Y”, genereting then a counting
dependency of the an bn kind, that is: ifn thenn)

 Natural languages are NOT even generable by Context-Free Grammars (Shieber
1985):

Jan säit das mer em Hans es huus hälfed aastriiche
(“famous” Swiss-German dialect)

J. says that we to H. The house have helped painting

Gianni, Luisa e Mario sono rispettivamente
sposato, divorziata e scapolo
(“ABC...ABC”... Are languages of the XX kind)

Intro to linguistic computation C. CHESI 44

41 42

43 44

12

Where are Natural Languages?
 Recursion in natural languages (that is, how to make infinite use of finite

means):

 Right recursion (abn: iteration or «tail recursion»):
[the dog bit [the cat [that chased [the mouse [that ran]]]]]

 Center embedding (anbn: counting recursion or «true recursion»):
[the mouse [(that) the cat [(that) the dog bit] chased] ran]

 Cross-serial dependencies (xx, identity recursion)
Aldo, Bea e Carlo sono rispettivamente sposato, nubile e divorziato
A.male, B.female , C.male are respectively marriedmale, unmarriedfemale & divorcedmale

Intro to linguistic computation C. CHESI 45

Where are Natural Languages?

Intro to linguistic computation C. CHESI

Type 0 languages

Mildly Context-Sensitive languages

Context-Free languages

Regular languages

Context-Sensitive languages

Natural
Languages

46

Today’s key concepts
What’s a formal grammar

 Rewriting Rules and Recursion
 Rewriting Rules restrictions create grammar classes organized in an inclusion hierarchy

(Chomsky’s Hierarchy)
 Regular Grammars (RG), Regular Expressions (RE) and Finite State Automata (FSA)

equivalence
 Context-Free Grammars (CFG) and Push-Down Automata (PDA) equivalence
 Using pumping lemmas to decide if a certain string property can be captured of not by a

certain class of grammars
 Natural languages are neither Regular, nor Context-Free (though RGs and CFGs are often

used to process Natural Languages!)

Intro to linguistic computation C. CHESI 47

Theory of (linguistic)
Computation

STAGE II

Intro to linguistic computation C. CHESI 48

45 46

47 48

13

Why having a computational model
 Predict possible dysfunctions

 Calculate the complexity of certain processes…

S0

C

A
B

Intro to linguistic computation C. CHESI 49

What’s complexity
 Sorting problem: order the following 5 numbers

 travelling salesman problem :
find the shortest path
connecting 5 cities

1 3 2 7 5

1

5

2
3

4

Intro to linguistic computation C. CHESI 50

What’s computable
 (informally speaking) a computation is a relation between an input and an

output. This relation can be defined by various algorithms: a series of
computational states and transitions among them until the final state is
reached. A computation attempts at reaching the final state through legal
steps admitted by the computational model (problem space = set of all
possible states the computation can reach).

 Turing-Church thesis (simplified)
every computation realized by a physical device can be realized by means of
an algorithm; if the physical device completes the computation in n steps, the
algorithm will take m steps, with m differing from n by, at worst, a polynomial.

 Some algorithm might take too much time to find a solution (e.g. years or
even centuries); other algorithms can not even terminate!

Intro to linguistic computation C. CHESI 51

Turing Machine
 Infinite tape subdivided in cells

 alphabet A (e.g. A ={0, 1})

 cursor C (that can move right and left,
and can read, delete or write a character)

 Finite set of states Q = (q0, q1 ... qn)

 Finite input I constituted by a sequence of characters of A

 Finite set of states S described as 5-tuples <qiabvqj> such that
qi, qj  Q; a, b  A; v = {right, left}

C

1 1 001

Intro to linguistic computation C. CHESI 52

49 50

51 52

14

Flow charts
 Oriented graph:

 An input (i)
 One or more exit (o)
 Finite set of instructions blocks such that

any instruction is in the form X = Y, X = X+1, X = X-1
 Finite set of special blocks, named conditions,

of the (Boolean) form X = Y?
 A finite set of connectors that links the blocks,

such that from every block just one arrow goes
outbound and, in case of conditional blocks,
2 arrows go outbound

condition

block A block B

false

true

i

o

Intro to linguistic computation C. CHESI 53

Modularity
 Turing Machines and flow charts are equivalent:

they express the very same class of function (computable functions)

 Both formalisms guarantee compositionality (M1  M2).

 Hence: “divide et impera” is a programming paradigm that suggests
decoupling a problem in smaller sub-problems for which a solution would be
easier to be found.

Intro to linguistic computation C. CHESI 54

Complexity
 Directly proportional to the resource usage:
 Time (time complexity): number of elementary steps needed
 Memory (space complexity): quantity of information to be stored at each step

 Complexity is directly proportional to the problem dimension (e.g. ordering
1000 words will be more complex that ordering 10 words);

 Grammar complexity should be related to its generative power.

Intro to linguistic computation C. CHESI 55

Complexity
 The problem dimension is expressed in terms of input length to be processed

 The order of complexity should be expressed in terms of input length, e.g.:
 c·n2 (example of polynomial time problem complexity)
 n = input length
 c = constant data (depending on the kind of computation)

 In this case we will say that the complexity order of the problem is n2 since the
c constant will be irrelevant with respect to n growing to the infinite.
Such complexity order is defined as: O(n2).

Intro to linguistic computation C. CHESI 56

53 54

55 56

15

Complexity
We are interested in the growing rate of the complexity function expressing

the mapping between input and output in terms of input dimension

 For space and time limited problems (resource usage surely finite) the
complexity calculus is irrelevant

 For n growing to the infinite, as in the case of the grammars we want to study,
the growing rate is crucial for determining the tractability of the problem

 A problem is considered computable/tractable if a procedure exists and
terminates with an answer (positive or negative) in a finite amount of time

Intro to linguistic computation C. CHESI 57

Complexity

 A problem with exponential time complexity (e.g. O(2N)) will
be hardly computable in a reasonable amount of time. To have
an idea, assume a device able to deal with 1 million steps per
second, there the calculation for specific input given specific
complexity function:

input
length → 10 20 50 100
↓ function

N2 0,0001
second

0,0004 sec. 0,0025 sec. 0,01 sec.

N5 0,1 sec. 3,2 sec. 5 min. e 2 sec. 2 hours and 8 min.

2N 0,001 sec. 1 sec. 35 year e 7 months 400 trillions of
centuries

N! 3,6 sec. about 771
centuries

A number of
centuries with 48
digits

A number of
centuries with 148
digits

NN 2 hours and
8 minutes

More than 3
trillions of years

A number of
centuries with 75
digits

A number of
centuries with 185
digits

Intro to linguistic computation C. CHESI 58

Complexity of classic problems
 3SAT problem (satisfability problem or SAT)

find a value assignment for all propositional letters satisfying the formula
below:

(a  b  c)  ( a  b   c)  (a  b  c)  ...

 In the worst case, all possible assignments must be evaluated, that is 2N

(where 2 are the possible assignment values, True and False, and N is the
number of propositionals a, b, c…).

 The problem has an exponential time growth complexity function, but, once
solved, can be readily proved: hard to solve, easy to verify!

Intro to linguistic computation C. CHESI 59

Complexity of classic problems
 Quantified Boolean Formula (QBF) problem

find a value assignment for all propositional letters satisfying the formula
below :
 Qx1,Qx2 … Qxn F(x1, x2 … xn)
 (with Q = ꓱ or ꓯ)

 The problem is hard to be solved, as 3SAT, but also hard to be verified:
the 3SAT problem is a special case of QBF where all Q are existential

 The universal quantification requires any assignment of values to be verified.

Intro to linguistic computation C. CHESI 60

57 58

59 60

16

Complexity of classic problems and
reducibility

 If a computer effectively solve a problem like 3SAT, it will use an algorithm that
is, at worst, polynomial.

 Because of the problem structure/space, such algorithm should be necessarily
non-deterministic.

We call the complexity of this king of problems NP (Non-deterministic
Polynomial time)

 Problem with complexity P are deterministic and polynomial. Problems with
an order P of complexity are (probably) included in problems with a NP
complexity order (no proof of reducibility from NP to P exists… yet).

Intro to linguistic computation C. CHESI 61

Complexity of classic problems and
reducibility

 Hypothesis:

 Problems like SAT are dubbed NP-hard (same difficulties, i.e. problem
structure/space with respect to NP class problems).

SAT
NP

P

P  NP?

Intro to linguistic computation C. CHESI 62

What’s Parsing
 Given a Grammar G and an input i, parsing i means applying a function p(G, i)

able to:

 Accept/Reject i

 Assign to i an adequate descriptive structure (e.g. syntactic tree)

Intro to linguistic computation C. CHESI 63

Universal Recognition Problem (URP)
and reduction

 Universal Recognition Problem (URP)
Given a Grammar G (in any grammatical framework) and a string x, x belongs
to the language generable by G?

 Reduction
is there any efficient mapping from this problem to a another well know
problem for which we can easily evaluate the complexity?

 YES… SAT problem!

Intro to linguistic computation C. CHESI 64

61 62

63 64

17

Universal Recognition Problem (URP)
and reduction

 URP is a generalized parsing problem that can be reduced to SAT in its core
critical structure

 In a nutshell: a string x, as a propositional a in a SAT formula, can receive an
ambiguous value assignment (for instance “vecchia” in Italian can both be a
noun and an adjectival, while a can be true or false).
We then need to keep the assignment coherent in x (to evaluate the
correctness of the final outcome) as in a SAT formula.

We conclude that URP is at least as complex as SAT, that is, NP-hard!

Intro to linguistic computation C. CHESI 65

Chomsky’s hierarchy and complexity
Type 0 languages

Mildly Context-Sensitive languages

Context-Free languages

Regular languages

Context-Sensitive languages

P

NP

Natural
languages

Intro to linguistic computation C. CHESI 66

Psycholinguistic complexity
 Complexity = difficulty in processing a sentence

 Hypothesis 1: formal complexity = psycholinguistic complexity

 Hypothesis 2: limited processing memory

 On the one hand, memory buffer capacity could be sufficient to store only N structures;

 On the other, using the memory for storing similar incomplete structures might create
confusion.

Intro to linguistic computation C. CHESI 67

Psycholinguistic complexity
 Hypothesis 1

processing non context-free structures causes major difficulties
(Pullum & Gazdar 1982)

 Hypothesis 2
Limited-size Stack (Yngve 1960)
linguistic processing uses a stack to store partial analyses.
The more partial phrases are stored in the stack,
the harder the processing will be.

Intro to linguistic computation C. CHESI 68

65 66

67 68

18

Psycholinguistic complexity
 Syntactic Prediction Locality Theory (SPLT, Gibson 1998) total memory load is

proportional to the sum of required an integration + referentiality needs:

 DPs required VPs (in SVO languages):
DP DP DP VP VP VP... is harder than DP VP

 A pronoun referring to an already introduced referential entity is less complex than a new
referent (pro < full DPs).

Intro to linguistic computation C. CHESI 69

Grammar and Parsing
 Grammars (generally) are declarative devices that does not specify

algorithmically how an input must be analyzed.

 non-determinism (multiple options all equally suitable in a given context) and
recursion are critical in parsing: not all rules lead to a grammatical tree-
structure in the end... And sometimes some algorithm could not even
terminate!

Intro to linguistic computation C. CHESI 70

Problem Space and searching strategies
 Given a sentence and a grammar the parser should tell us if the sentence is

generable by the grammar (URP, Universal Recognition Problem) and, in the
affirmative case, provide an adequate tree structure

 The problem space is the complete forest of trees and subtrees that can be
legally generated by applying the grammatical rules in a given context

Intro to linguistic computation C. CHESI 71

Problem Space and searching strategies
 English ambiguity:
 Buffalo Buffalo buffalo Buffalo Baffalo
 «a buffalo from Buffalo intimidates another buffalo from Buffalo»

https://www.youtube.com/watch?v=TWbzjGIec20

 Grammar:

 (non terminals)  (terminals)

S → DP VP

VP → V DP

DP → N Np

N → buffalo

Np → Buffalo

V → buffalo

Intro to linguistic computation C. CHESI 72

69 70

71 72

19

Problem Space and searching strategies
 English ambiguity:
 Time flies like an arrow
 Fruit flies like a banana

 Grammar:

Intro to linguistic computation C. CHESI 73

 (non terminals)  (terminals)

S → DP VP VP → V PP

VP → V PP PP → P DP

DP → N DP → D N

DP → N N

N → time N → fruit

N → flies V → flies

N → bananas D → a(n)

P → like V → like

Problem Space and searching strategies
 Italian sentence:
 la vecchia legge la regola

(«the old rule regulates it» vs. «the old woman reads the rule»)

 Grammar:  (non terminals)  (terminals)

S → DP VP

VP → V DP

VP → pro V

DP → D NP

NP → (AGG) N;

pro → la

D → la

AGG → vecchia

N → vecchia

N → legge

N→ regola

V → legge

V→ regola

Intro to linguistic computation C. CHESI 74

Problem Space and searching strategies
 Two main constraints:
 Grammatical rules predicts that from a root node S certain expansion will lead to terminals;
 The words in the sentence, indicates how the S expansions must terminate

We can start from the root node S for generating the structure:
Top-Down or goal-driven algorithm

We can start from single words, trying to combine then in phrases up to the
root node S:
Bottom-Up, or data-driven algorithm

Intro to linguistic computation C. CHESI 75

Top-Down Parsing Algorithm
 A simple (blind) top-down algorithm explores all possible expansion of S

offered by the grammar (assuming parallel expansions affects memory usage).

 Notice that “la regola regola la regola”, “la legge legge la vecchia legge”… will
be plausible analysis proposed by the Top-Down algorithm.

S

DP VP

NPD V DP

NPD

N

vecchia

N

regolalala legge

S

DP

NPD

N

VP

VproAGG

vecchia regolalala legge

NPD

Intro to linguistic computation C. CHESI 76

73 74

75 76

20

Bottom-Up Parsing Algorithm
 Historically, the first parsing algorithm (Yngve 55) and possibly the most

common (e.g. in programming languages parsers). It starts from lexical
elements, that are terminal symbols, and, phrase by phrase, up to S:

NPD

DP

V

VP

D

N

vecchia

N

DP

NP

regolalala legge

S S

NPD

DP

N

VP

AGG Vpro

vecchia regolalala legge

Intro to linguistic computation C. CHESI 77

What’s better?
 Top-Down strategy doesn’t loose time generating ungrammatical trees, but it

generates sentences without considering the input till the end.

 Bottom-Up strategy, will be locally consistent with the input, but it will
generate ungrammatical phrases unable to be rejoined under the root node S.

 Both blind strategies are complete, then roughly equivalent, but:
 Consider starting from the side with the most precise (unambiguous) information
 Explore the tree trying to be guided by the smallest possible ramification factor.

Intro to linguistic computation C. CHESI 78

LEFT CORNER Algorithm
 Basic idea

combination of a Top-Down strategy, filtered by Bottom-Up considerations.

 Left-corner rule
 Every non-terminal category will be rewritten at some point by a word in the input
 Then B if the «left-corner» of the A category

IFF A →* B → α.

 Off-line table of left corner given a standard grammar:

category S DP VP

left-corner D, Nproper, V D, Nproper aux, V

Intro to linguistic computation C. CHESI 79

Unresolved problems
 Left-recursion
 A →* Aα (es. DP → DP PP)

how do we stop?

 Ambiguity
 PP attachment (I saw a man with the binocular)
 coordination («papaveri e paperi rossi», red poppies and ducks)
 exponential growth of alternatives (Church e Patil 82) with respect to the number of PPs (3

PPs up to 5 possible analyses, 6 PPs up to 469 possible analyses… 8 PPs … 4867 possible
analyses!).

Intro to linguistic computation C. CHESI 80

77 78

79 80

21

Unresolved problems
 Inefficiency in subtrees analysis (backtracking is not needed in certain

analysis):

 a flight from Rome to Milano at 7:00PM with a Boeing 747

 DP → D N (ok, but incomplete…)
 DP → D N PP (ok, but incomplete…)
 DP → D N PP PP (ok, but incomplete…)
 …

Intro to linguistic computation C. CHESI 81

Dynamic Programming
 Dynamic programming reuses useful analyses by storing them in tables

(or charts).

 Once sub-problems are resolved (sub-trees in parsing), a global solution is
attempted by merging partial solutions together.

Intro to linguistic computation C. CHESI 82

Dynamic Programming:
Earley Algorithm

 Earley Algorithm (Earley 1970) is a classic example of Top-Down, Parallel,
Complete dynamic programming approach.

 The problem complexity (remember that generalized parsing is NP-hard) is
reduced to Polynomial complexity. In the worst case: O(n3).

 One input pass, from left-to-right, partial analyses are stored in chart with n+1
entries, with n equals to the input length .

Intro to linguistic computation C. CHESI 83

Dynamic Programming:
Earley Algorithm

 Each chart entry will include three levels of information:

 A subtree corresponding to one single grammatical rule

 the progress in the completion of the rule (we use a dot • indicating the processing step,
the rule is then dubbed "dotted rule")

 the position of the subtree with respect to the input position (two numbers indicating
where the rule began and where the rule is applied now:
e.g. DP → D • NP [0,1] the rule started at the beginning of the input (posiƟon 0) and it is
waiting between the first and the second word (position 1))

Intro to linguistic computation C. CHESI 84

81 82

83 84

22

Dynamic Programming:
Earley Algorithm

 Three fundamental operations are combined in Earley Algorithm:
 Predictor

add new rules in the chart, representing top-down expectations in the grammar; every rule in the
grammar that is an expansion of a non-terminal or pre-terminal node to the right of the dot will
be added here. e.g. S → • DP VP [0,0] DP → • D NP [0,0]

 Scanner
check the input, in the expected position, and trigger an advancement when the word is
recognized as belonging to the expected POS. A correct scan introduce a new rule in the next
posiƟon of the chart. e.g. DP → • D NP [0,0] iff D → arƟcle, then DP → D • NP [0,1]

 Completer
when the dot reached the end of the rule, the algorithm informs the chart that at the rule
starting position, the category has been recognized, hence advancing the rules with the dot to
the left of the relevalt category:
e.g. NP → AGG N • [1,3] will advance the rule in the [1] position,
DP → D • NP [0,1] adding DP → D NP • [0,3];

Intro to linguistic computation C. CHESI 85

Some consideration on efficiency
and plausibility

 A grammar can avoid considering space/time limits while focusing only on
descriptive adequacy;

 the parser should take into consideration such limits. It happens that one
grammar can be used by different parsing algorithms.

 The adequacy of the parser can be a matter of computational performance or
psycholinguistic plausibility:
 token transparency (Miller e Chomsky 63) or strict isomorphism (is the null hypothesis) the

parser implements exactly the derivation suggested by the grammar.
 type transparency (Bresnan 78) suggests that, overall, the parsers implements different

derivations with respect to the grammar, but overall, the same phenomena (e.g. passive
constructions) are processed, globally, in a coherent way.

Intro to linguistic computation C. CHESI 86

Some consideration on efficiency
and plausibility

 covering grammars (Berwick e Weinberg 83, 84) parser and grammar must
cover the same phenomena. But the parser should be psycholinguistically
plausible or computationally efficient then implementing derivations that are
not included in the grammar.

Intro to linguistic computation C. CHESI 87

Minimal(ist) derivation,
memory & intervention

STAGE II I

Intro to linguistic computation C. CHESI 88

85 86

87 88

23

Minimalist
Grammars

 Stabler’s (1997) formalization of a Minimalist Grammar, MG
(Chomsky 1995) as a 4-tuple (V, Cat, Lex, F) such that:

V is a finite set of non-syntactic features, (P  I) where

P are phonetic features and I are semantic ones;

Cat is a finite set of syntactic features,

Cat = (base  select  licensors  licensees) where

base are standard categories {comp, tense, verb, noun ...},

select specify a selection requirement {=x | x base}

licensees force phrasal movement {–wh, –case ...},

licensors satisfy licensee requirements {+wh, +case ...}

Lex is a finite set of expressions built from V and Cat (the lexicon);

F is a set of two partial functions from tuples of expressions to
expressions : {merge, move};

Intro to linguistic computation C. CHESI 89

Minimalist Grammars
V = P = {/what/, /did/, /you/, /see/},

I = {[what], [did], [you], [see]}

Cat = base = {D, N, V, T, C}
select = {=D, =N, =V, =T, =C}
licensors = {+wh}
licensees = {–wh}

Lex = { [–wh D what], [=V T did], [D you], [=D =D V see],
[=T +wh C ] }

F = {merge, move} such that:
merge ([=F X] , [F Y]) = [X X Y]
(“simple merge” on the right, “complex merge” on the left)
move ([+g X] , [W [–g Y]]) = [[X Y X] W, tY]

Intro to linguistic computation C. CHESI 90

Minimalist
Grammars

Intro to linguistic computation C. CHESI 91

1. merge ([=D =D V see], [-wh D what]) → [see =D V see, –wh what]
2. merge ([D you], [=D V see, -wh what]) → [see you, [see V see, –wh what]]
3. merge ([=V T did], [see you, [see V see, -wh what]]) →

([did T did, [see you, [see see, –wh what]]]
4. merge ([=T +wh C ], [did T did, [see you, [see see, –wh what]]]) →

([C +wh C , [did did, [see you, [see see, –wh what]]]])
5. move ([C +wh C , [did did, [see you, [see see, –wh what]]]]) →

[C What C , [did did, [see you, [see see, twhat]]]]

[=D =D V see] [–wh D what]

[=D V see][D you]

[V see][=V T did]

[T did][=T +wh C ]

[+wh C ]

[C ]

[–wh what]

MG: problems with successive cyclicity
Wh- successive cyclic movement

Intro to linguistic computation C. CHESI

(=D =D V say) …

(=D V say)(D John)

(V say)(+wh =T C )

(+wh C )

…

(–wh who)

(D –wh –wh … –wh who)(=D =D V invited)

(=D V invited)(–wh … –wh who)

92

89 90

91 92

24

MG: how explaining islandhood?
 No difference in picking up an element from a subject or an object (idem for

RCs and Adjuncts)

Intro to linguistic computation C. CHESI

(=D =D V see) (D a friend of

(–wh who))

(=D V see)(D John)

(V see)(+wh =T C )

(+wh C )

C

(–wh who)

(=D =D V see)

(D a friend of

(–wh who))
(=D V see)

(D John)

(V see)(+wh =T C )

(+wh C )

C

(–wh who)

93

Representations vs. Derivations

 “the computational system takes representations of a given format and modifies
them” (Chomsky 1993:6)

 The order of Structure Building Operation is abstract with “no temporal
interpretation implied” (Chomsky 1995:380)

 Derivation by Phase (Chomsky 2005-08): a phase is a Syntactic Object built
assuming Structure Building Operations (Merge and Move) over a finite set of
Lexical Item (Lexical Array, aka Numeration) CP and vP are phases (maybe DP)

Intro to linguistic computation C. CHESI 94

Derivations: some logical possibilities
 ((John) saw ((the picture) (of Mary)))

VPDP

vP

DPsaw

the
picture

of
Mary

PP

John

Intro to linguistic computation C. CHESI 95

Derivations:
Local Relations

(B (A John) saw (C the picture (D of Mary)))

bottom-up, right left bottom-up, left-right

top-down, left-right top-down, right-left

Intro to linguistic computation C. CHESI 96

93 94

95 96

25

Processing Object Relatives (ORs)
 Bever (1970)

double embedding is not always nearly impossible to process (Miller &
Chomsky 1963):

 The reporter the politician the commentator met trusts said the president won't resign.
 The reporter everyone I met trusts said the president won't resign.

Intro to linguistic computation C. CHESI 97

Processing Object Relatives (ORs)
 Gordon, Hendrick & Johnson (2001)

working memory request is evaluated by studying reading time (RT) and
comprehension accuracy in self-paced reading experiments comparing critical
regions of various kinds of Relative Clauses:

 Experiment 1 (materials): SRs (a) and ORs (b)
 The banker [that _ praised the barber] climbed the mountain
 The banker [that the barber praised _] climbed the mountain

Intro to linguistic computation C. CHESI 98

Processing Object Relatives (ORs)
 Gordon et al. (2001) - Experiment 1 (results)

Intro to linguistic computation C. CHESI 99

Processing Object Relatives (ORs)
 Gordon et al. (2001) - Experiment 2

complexity can be mitigated by varying the RC Subject typology (reading time
(RT) and comprehension accuracy in self-paced reading experiments are
tested, as before):

 Experiment 2 (materials): DP (a) vs. Pro (b)
 The banker [that the barber praised _] climbed the mountain
 The banker [that you praised _] climbed the mountain

Intro to linguistic computation C. CHESI 100

97 98

99 100

26

Processing Object Relatives (ORs)
 Gordon et al. (2001)

Experiment 2 (results)

Intro to linguistic computation C. CHESI 101

Processing Object Relatives (ORs)
 Gordon et al. (2001) - Experiment 3 (materials):

DP (a) vs. proper names (b)
 The banker [that the barber praised _] climbed the mountain
 The banker [that Ben praised _] climbed the mountain

Intro to linguistic computation C. CHESI 102

Processing Object Relatives (ORs)
 Gordon et al. (2001)

Experiment 3 (results)

Intro to linguistic computation C. CHESI 103

Processing Object Clefts
 Gordon et al. (2001) - Experiment 4 (materials):

Subject vs. Object Clefts X DP vs. proper names
 It was the banker that the lawyer saw _ in the parking lot
 It was the banker that Bill saw _ in the parking lot
 It was John that the lawyer saw _ in the parking lot
 It was John that Bill saw _ in the parking lot

Intro to linguistic computation C. CHESI 104

101 102

103 104

27

Processing Object Clefts
 Gordon et al. (2001) - Experiment 4 (results):

Intro to linguistic computation C. CHESI 105

Explaining complexity
 Role-determinant accounts (MacWhinney & Pleh 1988)
 Double role for the RC head: subject in the matrix sentence, object in the RC:

The banker [that the barber praised _] climbed the mountain (OR)

Memory-load accounts (Ford 1983, MacWhinney 1987,
Wanner & Maratsos 1978)
 The RC head must be kept in memory longer in OR before being integrated:

The banker [that praised the barber] climbed … (SR)
The banker [that the barber praised _] climbed … (OR)

Intro to linguistic computation C. CHESI 106

Explaining complexity
 Linguistic Integration Cost (Gibson 1998:12-13)
 Processing difficulty is proportional to the distance expressed in terms of number of

intervening discourse referents, following a “referentiality hierarchy”:
descriptions > (short) names > referential pronouns > indexical pronouns

 Similarity based accounts (Gordon et al. 2001)
 Having two DPs of the same kind stored in memory makes the OR more complex than SR.

This models memory interference during encoding, storage and retrieval (Crowder 1976)

Intro to linguistic computation C. CHESI 107

Explaining complexity
More on Similarity based accounts (Gordon et al. 2001)
 It might be able to explain why SR vs. OR asymmetry disappears with RC subject pro/proper

names (those DPs are legal heads only for clefts)

 Intervention effects
(Grillo 2008, Friedmann et al. 2009, Rizzi 1990)
 Processing difficulty is proportional to the number and kind of relevant features shared

between the moved item and any possible intervener:

Intro to linguistic computation C. CHESI 108

X YZ

105 106

107 108

28

Explaining complexity
More on Intervention effects (Friedmann et al. 2009)
 Identity (bad for adults, bad for children)

 Inclusion (ok for adults, bad for children)

 Disjunction (ok for adults, ok for children)

Intro to linguistic computation C. CHESI 109

+A (+A)+A

+A +B (+A +B)+A

+A (+A)+B

Kinds of non-local dependencies
Long distance Wh- dependencies

intervener intervener

[CPWhat do you think [CP _ Mary will [VP buy _]]] ?

criterial intermediate argument

Intro to linguistic computation C. CHESI 110

Kinds of non-local dependencies
Object Clefts

 In Object Clefts (OCs), the copula selects a truncated CP
(Belletti 2008):

It is [FocP an ice cream that [TP Mary will buy _]]

… BE [CP Force [FocP … [FinP that [TP Subject … Object]]]]

Intro to linguistic computation C. CHESI 111

Comparing Object Clefts
 Warren & Gibson (2005) - Experiment (materials):

definite descriptions vs. proper names vs. pronouns
a. It was the banker that the lawyer avoided _ at the party
b. It was the banker that Dan avoided _ at the party
c. It was the banker that we avoided _ at the party
d. It was Patricia that the lawyer avoided _ at the party
e. It was Patricia that Dan avoided _ at the party
f. It was Patricia that we avoided _ at the party
g. It was you that the lawyer avoided _ at the party
h. It was you that Dan avoided _ at the party
i. It was you that we avoided _ at the party

Intro to linguistic computation C. CHESI 112

109 110

111 112

29

Comparing Object Clefts
Warren & Gibson (2005) - results (Tessa Warren P.C.)

D = definite description (e.g. the banker)
N = proper names (e.g. Dan)
P = pronouns (e.g. you)

Intro to linguistic computation C. CHESI 113

condition D-D D-N D-P N-D N-N N-P P-D P-N P-P

Read. time
(SE) ms

365
(19)

319
(12)

306
(14)

348
(18)

347
(21)

291
(14)

348
(18)

311
(15)

291
(13)

Predicting reading times (rt)
with intervention-based accounts

 Assuming that Definite Description = {+NP, N}, Proper Names = {+NP,
NProper}, pro = {} (Belletti & Rizzi 2013),
Intervention effects are predicted to be stronger in matching D-D and N-N
condition (against memory-load accounts), while P-P is expected not to be
critical (because of the +NP absence):

Intro to linguistic computation C. CHESI 114

condition D-D D-N D-P N-D N-N N-P P-D P-N P-P

Read. time
(SE) ms

365
(19)

319
(12)

306
(14)

348
(18)

347
(21)

291
(14)

348
(18)

311
(15)

291
(13)

prediction hard ? easy ? hard easy easy easy easy

Some problems with the
intervention-based account

 Features triggering movement are those relevant for intervention (Friedmann
et al. 2009:82), but:
 “+R” feature causing Object movement in ORs (or “+Foc” in OCs) is not present on

Subject;
 Neither the “lexical restriction” nor phi-features trigger any movement in ORs or OCs
 The “lexical restriction” should be not accessible at the edge of the DP, where features

triggering movement should be located (but see Belletti & Rizzi 2013, next slide)
 Why slow-down is observed at verb segment?

Intro to linguistic computation C. CHESI 115

Some problems with the
intervention-based account

 Belletti & Rizzi 2013:
 Evidence that lexically restricted wh-items occupy different positions in the left periphery

(Munaro 1999):

a. Con che tosat à-tu parlà?
with which boy did you speak?

b. Avé-o parlà de chi?
Have you spoken of whom?

Intro to linguistic computation C. CHESI 116

113 114

115 116

30

Feature Retrieval Cost (FRC)
Why do we need it? (a summary)

 An “integration cost” (cf. Gibson 1998) is not enough
 È il bambino che il signore ha salutato …
 È Luigi che Gianni ha salutato …

 Intervention-based accounts are not “gradable” (no quantitative, precise,
measurements)

 Bottom-Up standard theories do not make clear predictions on processing:
they predict what creates complexity, but not when, why and how exactly in
parsing and generation?

Intro to linguistic computation C. CHESI 117

Processing-friendly Minimalist Grammars
Phase and Expectation-based MGs (PMGs and e-MGs)

 Common restriction on Merge:
 Given two lexical items [=Y X] and [Y Z] such that

X selects Z, then:

 [=Y X] is processed before Y
 When [=Y X] is processed, an expectation for [Y ...] is created

Intro to linguistic computation C. CHESI 118

Y Z=Y X

=Y X

Processing-friendly Minimalist Grammars
Phase and Expectation-based MGs (PMGs and e-MGs)

 A Phase is the minimal computational domains within which a selection
requirement must be satisfied:

 Given a lexical item [=Y X], [Y ...] is the selected phase:

 Merge reduces to lexical selection (or unification)
(e.g. [Y Z] insertion)

Intro to linguistic computation C. CHESI 119

[Y ...]=Y X

=Y X

Processing-friendly Minimalist Grammars
Phase-based MGs (PMGs)

 If we assume that selection can include both functional features (+F) and
lexical features (Y) at the same time, a Phase becomes a subtree to be
expanded:
 Given a lexical item [=[+F Y] X], [+F Y ...] is the selected phase:

 [+F Y ...] is an extended projection of a lexical category Y
(e.g. a DP is an extended projection of N, i.e. [+D N])

Intro to linguistic computation C. CHESI 120

[Y ...]=[+F Y] X

=[+F Y] X

[+F ...] [Y ...]

117 118

119 120

31

Processing-friendly Minimalist Grammars
Phase-based MGs (PMGs)

 Both a declarative sentence
[+S +T V] and a wh- question
[+wh +T +S V] are phases
(i.e. extended projections
of a V head)

 [+wh ... what], [+T did],
[+S ... John], [=DP =DP V buy]

Intro to linguistic computation C. CHESI 121

+wh

V

V

V+T

+S V

+wh … what

+T did

+S … John
=DP =DP V buy V

[DP …] V

=DP V (buy) [DP …]

Processing-friendly Minimalist Grammars
Expectation-based MGs (e-MGs)

 A phase head is a lexical category
(N, V, A)

 root[C  =wh =T], [wh D what], [T did =V],
[D John], [V buy=DP =DP]

Intro to linguistic computation C. CHESI 122

C=WH, =T

C =T

T =VC 

V

wh D what

T did=V

D John

V buy =D =D V

[D …] V

=D V (buy) [D …]

T=V

Processing-friendly
Phase and Expectation-based MGs (PMGs and e-MGs)

 Common trigger for Move:
 An item [+Y ... W X], in a given structure, must be moved if it can not be fully interpreted in its

insertion position:

Intro to linguistic computation C. CHESI 123

Z
+Y X

Y

= W Z

Y

... Y

W (X)

Discourse related
position

Thematic
position

Processing-friendly
Expectation-based MGs (e-MGs)

 root[C  =wh =T],
[T did =V], [V buy=DP =DP],
[D John], [wh D what]

Intro to linguistic computation C. CHESI 124

Memory buffer
D (what)
D (John)

C=WH, =T

C =T

T =VC 

V

wh D what

T did=V

D John

V buy =D =D V

D (John) V

=D V (buy)

T=V

D (what)

121 122

123 124

32

Processing-friendly
Phase-based Minimalist Grammar

 The derivation unfolds Top-Down and (as a consequence) Left-Right
 Unexpected features trigger movement
 Phases restrict the domain in which a non-local dependency must be satisfied
 Last-In-First-Out memory buffer, as a first approximation, is used to store and

retrieve items for non-local dependencies (memory buffer must be empty at
the end of the derivation)

 The order in which phases are expanded makes a difference: the last selected
phase has a special status (sequential phase) while phases that are not the
last selected ones (e.g. phases that results from expansion of functional
features) qualifies as nested phases (Bianchi & Chesi 2006)

Intro to linguistic computation C. CHESI 125

Deriving OCs Top-Down
 In Object Clefts (OCs), the copula selects a truncated CP

(Belletti 2008):

… BE [CP Force [FocP … [FinP che [TP Subject … Object]]]]

Intro to linguistic computation C. CHESI 126

Deriving OCs Top-Down
 It [… =CPr … was] [CPr John that Bill saw]

Intro to linguistic computation C. CHESI 127

Foc=Fin

Fin=T

T

T

D John

Fin that

D Bill

T V saw =D =D V

D (Bill) V

V (saw) =D D (John)Memory buffer
D (John)

D (Bill)

Cue-based retrieval and intervention
 interference is the major constraint on accessing information in memory

(Anderson & Neely 1996; Crowder 1976; see Nairne 2002 for a review).
 the locus of the interference effect is at retrieval, with little or no effect on

memory encoding or storage (Dillon & Bittner 1975; Gardiner et al. 1972;
Tehan & Humphreys 1996)

 Content-adressable memory (e.g. memory load paradigm, Van Dyke &
McElree 2006), no exhaustive search, no delay

 Search of Associative Memory (SAM) model
(Gillund & Shiffrin 1984)
P(Ii|Q1, … , Qn) =

∏ ௌሺொೕ,ூ೔ሻ
ೢೕ೘

ೕసభ
∑ ∏ ௌሺொೕ,ூೖሻ

ೢೕ೘
ೕసభ

ಿ
ೖసభ

Intro to linguistic computation C. CHESI 128

125 126

127 128

33

On DP features (and structure)
 Elbourne (2005)

[[THE i] NP]

 Zamparelli (1995-2000)
[SDP Strong QP [PDP Week QP [KIP (Restrictive Adj) [NP Noun]]]]

 Longobardi (1994-2005), a rough summary:
 Definite Descriptions [D the [N man]]
 Proper Names [D Johni [N ti]]
 Pronouns [D you [N ]]

Intro to linguistic computation C. CHESI 129

Relevant DP features
Definite Descriptions & Proper Names

 Both proper names and common nouns have category N

 Two different kinds of N: Nproper, N(common)

Intro to linguistic computation C. CHESI 130

N in situ (common nouns) N-to-D raising
Il mio Gianni (Il mio amico) *mio Gianni
La sola Maria (la sola amica) Maria sola (*l’amica sola)

Relevant DP features
On D and Pronouns

 Both determiners and personal pronouns introduce a “referential pointer”
to an individual constant or variable in the domain of discourse

 Pro are NP-ellipsis licensors (they can be used as determiners «we italians»):
[D noi [N italiani]]
(D introduces an index, that bounds a variable predicated in N)

 (More) features on pro:
 1st and 2nd person (highly accessible referents) vs. 3rd person (default person, context-

determined referent)
 case

Intro to linguistic computation C. CHESI 131

Relevant DP features
 Definite descriptions: {D, N}

 Proper names: {D, Nprop}

 Pronouns: {D, case, pers}

Intro to linguistic computation C. CHESI 132

129 130

131 132

34

Feature Retrieval Cost (FRC)
metrics at work

 Cost function (at X given mx items to be retrieved from memory)

 FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 m = number of items stored in memory at retrieval
 nF = new features to be retrieved from memory
 dF = number of distinct cued features (e.g. agreement and case features probed by the

verb)

Intro to linguistic computation C. CHESI 133

Feature Retrieval Cost (FRC)
metrics at work

FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 D-D matching
it was the lawyer{D, N} who the businessman{D, N} avoided…

FRC (avoided) = 27

that is 9 · 3:
9 for retrieving the businessman,

since nF=2 (D and N count as one), m=2 because two DPs are in memory at this time,
and dF=0 because no feature is cued by the verb distinguishing one DP from the other;

3 for retrieving the lawyer,
since nF=2 (D and N are new now), m=1 and dF=0

Intro to linguistic computation C. CHESI 134

Feature Retrieval Cost (FRC)
metrics at work

FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 N-N matching
it was Dan{D, N_prop} who Patricia{D, N_prop} avoided…

FRC (avoided) = 18

that is 9 · 2:
9 for retrieving Dan,

nF=2 (even though D should be contextually salient, being two proper names
presents, the same D, i.e. a co-referential index, cannot be sufficient to distinguish them,
then an extra cost must be paid here as in the D-D condition), m=2, dF=0;

2 for retrieving Patricia,
since nF=0 (just N is new since the determiner is now contextually salient and unique,
m=1 and dF=0)m=1 and dF=0

Intro to linguistic computation C. CHESI 135

Feature Retrieval Cost (FRC)
metrics at work

FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 P-P matching
it was you{D, pers_II, case} who we{D, pers_I, case_nom} avoided…

FRC (avoided) = 4

that is 2 · 2:

2 for the we, nF=1, m=2 and dF=1 (number, person and case mismatches are always present;
case is cued by the verb),

2 for retrieving you, nF=1, m=1 and dF=0 for the object pronoun

Intro to linguistic computation C. CHESI 136

133 134

135 136

35

Feature Retrieval Cost (FRC)
metrics at work

FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 D-N matching
it was the lawyer{D, N} who Patricia{D, N_prop} avoided…

FRC (avoided) = 12

that is 4 · 3:
4 for Patricia, nF=1, that is N, since D is contextually salient, m=2, dF=0,
3 for retrieving the lawyer (nF=2, m=1, nF=0)

Intro to linguistic computation C. CHESI 137

Feature Retrieval Cost (FRC)
metrics at work

FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 D-P condition
it was the lawyer{D, N} who we{D, pers_I, case_nom} avoided…

FRC (avoided) = 6

that is 2 · 3:
2 for retrieving we (nF=1 even if deictic pronouns are contextually salient, the correct person
must be retrieved, m=2, dF=1 since a distinct case on pronouns is cued by the verb),
3 for retrieving the lawyer (nF=2, m=1, nF=0)

Intro to linguistic computation C. CHESI 138

Feature Retrieval Cost (FRC)
metrics at work

FRC(x) = ∏ ሺଵା௡ி೔ሻ೘೔

ሺଵାௗி೔ሻ
௠ೣ
௜ୀଵ

 P-D condition
it was you{D, pers_II, (case)} who the businessman{D, N} avoided…

FRC (avoided) = 18

that is 9 · 2:
9 for the the businessman (nF=2, m=2, dF=0);
2 for retrieving you (nF=1, m=1, dF=0);

Intro to linguistic computation C. CHESI 139

Feature Retrieval Cost (FRC)
metrics at work

 The complete prediction set:

Intro to linguistic computation C. CHESI 140

condition D-D D-N D-P N-D N-N N-P P-D P-N P-P

Read. time
(SE) ms

365
(19)

319
(12)

306
(14)

348
(18)

347
(21)

291
(14)

348
(18)

311
(15)

291
(13)

prediction
log(FRC) 1,43 1,08 0,78 1,26 1,26 0,60 1,26 0,90 0,69

137 138

139 140

36

Feature Encoding Cost (FEC)
 Feature Encoding Cost (FEC) is a numerical value associated to each new item

merged that is proportional to the number of new relevant features integrated
in the structure:

FEC(x) = ∑ 𝑒𝐹௜௡
௜ୀଵ

 𝑒𝐹 is the cost of each new relevant feature to be encoded at x.

 For simplicity 𝒆𝑭 = 1 for a new categorial feature introduced (e.g. 1 for D and
1 for N), 2 for a duplication of the same lexical category requiring structural
integration (i.e. 2 for the second N both in D1-D2 and N1-N2), 0 otherwise.

Intro to linguistic computation C. CHESI 141

Feature Encoding Cost (FEC)
objectfocalized subject verb spill-over condition

a. It was (1) the banker (2) that (1) the lawyer (3) avoided _ (2) at the party (3) [D1-D2]

b. It was (1) the banker (2) that (1) Dan (1) avoided _ (2) at the party (3) [D1-N2]

c. It was (1) the banker (2) that (1) we (0) avoided _ (2) at the party (3) [D1-P2]

d. It was (1) Patricia (1) that (1) the lawyer (2) avoided _ (2) at the party (3) [N1-D2]

e. It was (1) Patricia (1) that (1) Dan (2) avoided _ (2) at the party (3) [N1-N2]

f. It was (1) Patricia (1) that (1) we (0) avoided _ (2) at the party (3) [N1-P2]

g. It was (1) you (0) that (1) the lawyer (2) avoided _ (2) at the party (3) [P1-D2]

h. It was (1) you (0) that (1) Dan (1) avoided _ (2) at the party (3) [P1-N2]

i. It was (1) you (0) that (1) we (0) avoided _ (2) at the party (3) [P1-P2]

Intro to linguistic computation C. CHESI 142

Chesi & Canal (2019)
objectfocalized subject verb spill-over condition

a. Sono [gli architetti]i che [gli ingegneri] hanno consultato _i prima di iniziare i lavori. Dart-Dart
are3P_PL the architects that the engineers have3P_PL consulted before beginning the works

b. Sono [gli architetti]i che [voi ingegneri] avete consultato _i prima di iniziare i lavori. Dart-Dpro
are3P_PL the architects that you engineers have2P_PL consulted before beginning the works

c. Siete [voi architetti]i che [gli ingegneri] hanno consultato _i prima di iniziare i lavori. Dpro-Dart
are2P_PL you architects that the engineers have3P_PL consulted before beginning the works

d. Siete [voi architetti]i che [voi ingegneri] avete consultato _i prima di iniziare i lavori. Dpro-Dpro
are2P_PL you architects that you engineers have2P_PL consulted before beginning the works

Intro to linguistic computation C. CHESI 143

Chesi & Canal (2019)

Intro to linguistic computation C. CHESI 144

condition Art1-Art2 Pro1-Pro2 Art1-Pro2 Pro1-Art2

Similarity-based prediction hard hard medium medium

Intervention-based prediction hard hard medium medium

Top-down prediction (FRC) – H1 hard hard medium medium

Top-down prediction (FRC) – H2 hard hardest medium hard

Memory-load prediction – A1 hard hard hard hard

Memory-load prediction – A2 harder hard hard harder

Memory-load prediction – A3 hard harder harder hard

ACT-R-based prediction hard hard hard hard

141 142

143 144

37

Chesi & Canal (2019)

Intro to linguistic computation C. CHESI 145

Chesi & Canal (2019)

Intro to linguistic computation C. CHESI 146

1

2

3

4

5

6

7

0

200

400

600

800

1,000

1,200

ar
t-

ar
t

ar
t-

pr
o

pr
o-

ar
t

pr
o-

pr
o

ar
t-

ar
t

ar
t-

pr
o

pr
o-

ar
t

pr
o-

pr
o

ar
t-

ar
t

ar
t-

pr
o

pr
o-

ar
t

pr
o-

pr
o

ar
t-

ar
t

ar
t-

pr
o

pr
o-

ar
t

pr
o-

pr
o

DP1 DP2 VERB SPILL

TT GD frec dlt

Conclusion
We rephrased the intervention-based idea (Friedmann et al. 2009) in Top-

Down terms, trying to reconcile the formal account of intervention (what)
with processing evidence (when and how)

What permits to express the exact complexity cost is a Top-down (that in the
end produce a left-right) derivation (this way the model fitting can be directly
compared with other complexity metrics, e.g. SPLT, Gibson 1998)

 The special role of intervention has been expressed in terms of interference at
retrieval (e.g. Van Dyke & McElree 2006)

Intro to linguistic computation C. CHESI 147

Further development
 Feature structures (and actual cues) need to be further refined (other

features, e.g. animacy, Kidd et al. 2007, and semantic selection, Gordon et al.
2004, should be considered)

 The counterintuitive idea that Subject “is harder” to retrieve than Object in
ORs should receive experimental support

 Is it a purely privative system (+/- F) enough?

 Doing away with LIFO structure which is computationally OK, but
psycholinguistically odd (cf. content-adressable memory).

Intro to linguistic computation C. CHESI 148

145 146

147 148

38

Crucial concepts
of this course

 What’s a formal grammar and why do we need to specify it
 Rewriting rules and recursion
 Restrictions on rule format and generative power (Chomsky's

hierarchy)
 Equivalence between grammars, finite state automata and push-

down automata
 Where natural languages are located in Chomsky’s Hierarchy

 What’s a computation
 Problem space and its (algorithmic) exploration
 Complexity calculus
 Parsing algorithms (Earley)

 What’s a Top-Down derivation
 A reconciling view of Competence and Performance
 Reconstruction and islands
 Predictions and phases
 Complexity and intervention (possibly in terms of retrieval)

Intro to linguistic computation C. CHESI 149

Introduction to Linguistic Computation
and Complexity Theory

THANKS
(for the “exam”: write a two pages abstract, including

references, discussing a topic of your interest related to
what we presented during this mini-course)

CRISTIANO CHESI
N E T S , I U S S

L A B O R ATO R Y FO R
N E U R O L I N G U I S T I C S ,

CO M P U TAT I O N A L
L I N G U I S T I C S A N D

T H E O R E T I C A L S Y N TA X

Ph.D. in Theoretical and Experimental Linguistics (TEL)

149 150

